This study examines conditions that impact PPP delivery success or failure in the roadways sector in India using Qualitative Comparative Analysis. QCA is well-suited for problems where multiple factors combine to create pathways leading to an outcome. Past investigations have compared PPP and non-PPP project delivery performance, but this study examines performance within PPPs by uncovering a set of conditions that combine to influence the success or failure road PPP project delivery in India. Based on data from 21 cases, pathways explaining project delivery success or failure were identified. Specifically, PPPs with high concessionaire equity investment and low regional industrial activity led to project delivery success. Projects with lower concessionaire equity investment and low reliance on toll revenue and with either: (a) high project technical complexity or (b) high regional industrial activity, led to project delivery failure. The pathways identified did not have coverage values that they were extremely strong. Coverage strength was hindered by lack of access to information on additional conditions that could be configurationally important. Further, certain characteristics of the Indian market limit generalization. Identification of combinations of conditions leading to PPP project delivery success or failure improves knowledge of the impacts of structure and characteristics of these complex arrangements. This study is one of the first to use fuzzy QCA to understand project delivery success/failure in road PPP projects. Moreover, this study takes into account factors specific to a sector and delivery mode to explain project delivery performance.
Infrastructure development is critical to delivering growth, reducing poverty and addressing broader development goals, as argued in the World Bank Report Transformation through Infrastructure (2012). This paper surveys the literature of the linkages between infrastructure investment and economic growth, discusses the role of infrastructure in the participation of global value chains and in supporting economic upgrades, highlights the challenges faced the least developed countries and provides policy recommendations. It suggests that addressing the bottlenecks in infrastructure is a necessary condition to provide a window of opportunity for an economy to develop following its comparative advantage. With the right conditions, good infrastructure can support an economy, particularly a less developed economy, to reap the benefit through the participation in the global value chains to upgrade the economic structure.
Agroforestry holds the key in providing alternative economically viable livelihood development and to support mountainous farmers to adapt to climate change. Innovative agroforestry interventions integrating animal production, horticulture etc into cropping systems exist that can help farmers improve yields and build resilience for supporting livelihoods particularly among marginal communities. But, the lack of knowledge, technical know-how and other information among the farmers are major barriers in adoption of agroforestry. Millions of the farmers of mountainous regions are already wrestling with water scarcity, which would be more severe in climate change scenario. The Himalayan regions are have been considered to be highly sensitive to climate change. Indeed, Innovative agroforestry interventions have the potential to conserve natural resources, improve productivity and provide resilience to climate change. The present paper highlights the need for developing innovative agroforestry interventions to promote various alternate livelihood options through diversification, adoption of high yielding varieties and development of innovative products from forest resources. Of these spice based agroforetry, silvi-medicinal systems, Van silk cultivation, bamboo and ringal cultivation and development and use of farm resources based products like bamboo based composite structures, Seabuckthorn herbal tea, Ghingaroo juice (Crataegus crenulata) and incense products etc holds a promising potential to be explored as better options for future scenario.
The technology of vermicomposting containing their leachates, teas and other extracts such as vermiwash as a result of earthworm action is widely applied for safe management of agricultural, industrial, domestic and hospital wastes. Remediation of polluted soils, improving crop productivity and inducing the resistance against biotic and abiotic stresses are other advantages of vermicompost derived liquids when used in agriculture. Contrary to the fact that chemical fertilizers are still widely used in agriculture, societies gradually become aware of the negative effects of these fertilizers on their health. Therefore, vermicompost derived liquids contain high amount of valuable plant nutrients which has the potential to be used as liquid fertilizer. This paper reviews the potential of vermicompost derived liquids as as an efficient combination of nutrient source of vermicompost derived liquids contributing to plant growth and acting as a deterrent to biotic and abiotic stresses.
In recent years, the foundry sector has been showing an increased interest in reclamation of used sands. Grain shape, sieve analysis, chemical and thermal characteristics must be uniform while molding the sand for better casting characteristics. The problem that tackled by every foundry industry is that of processing an adequate supply of sand which has the properties to meet many requirements imposed upon while molding and core making. Recently, fluidized bed combustors are becoming core of ‘clean wastes technology’ due to their efficient and clean burning of sand. For proven energy efficient sand reclamation processing, analysis of heating system in fluidized bed combustor (FBC) is required. The objective of current study is to design heating element and analysis of heating system by calculation of heat losses and thermal analysis offluidized bed combustorfor improving efficiency.
Electricity generation around the world is mainly produced by using non-renewable energy sources especially in the commercial buildings. However, Rooftop solar Photovoltaic (PV) system produced a significant impact on environmental and economical benefits in comparison to the conventional energy sources, thus contributing to sustainable development. Such PV’s system encourages the production of electricity without greenhouse gas emissions that leads to a clean alternative to fossil fuels and economic prosperity even in less developed areas. However, efficiency of rooftop solar PV systems depends on many factors, the dominant being geographical (latitude, longitude, and solar intensity), environmental (temperature, wind, humidity, pollution, dust, rain, etc.) and the type of PV (from raw material extraction and procurement, to manufacturing, disposal, and/or recycling) used. During the feasibility analysis of the environment, geographical conditions are keep in well consideration, but the pollution level of the city is always overlooked, which significantly influences the performance of the PV installations.
Therefore, this research work focused on the performance of rooftop solar PV installed in one of the most polluted city in India. Here, the loss in power generation of rooftop solar PV has been studied for the effect of deposited dust particles, wind velocity before and after the cleaning of the panels. The actual data has been utilized for the calculation of the energy efficiency and power output of the PV systems. According to the results, it has been concluded that dust deposition, wind speed and pollution level in city significantly reduces the efficiency of solar photovoltaic panel. Hence, an overview of social and environmental impacts of PV technologies is presented in this paper along with potential benefits and pitfalls.
Copyright © by EnPress Publisher. All rights reserved.