Surveys are one of the most important tasks to be executed to get valued information. One of the main problems is how the data about many different persons can be processed to give good information about their environment. Modelling environments through Artificial Neural Networks (ANNs) is highly common because ANN’s are excellent to model predictable environments using a set of data. ANN’s are good in dealing with sets of data with some noise, but they are fundamentally surjective mathematical functions, and they aren’t able to give different results for the same input. So, if an ANN is trained using data where samples with the same input configuration has different outputs, which can be the case of survey data, it can be a major problem for the success of modelling the environment. The environment used to demonstrate the study is a strategic environment that is used to predict the impact of the applied strategies to an organization financial result, but the conclusions are not limited to this type of environment. Therefore, is necessary to adjust, eliminate invalid and inconsistent data. This permits one to maximize the probability of success and precision in modeling the desired environment. This study demonstrates, describes and evaluates each step of a process to prepare data for use, to improve the performance and precision of the ANNs used to obtain the model. This is, to improve the model quality. As a result of the studied process, it is possible to see a significant improvement both in the possibility of building a model as in its accuracy.
This contribution questions young people’s access to digital networks at the scale of intermediate cities in Saint-Louis. Thus, it analyzes the prescriptions of digital actors responsible for the development of digital economy in relation with the orientations of the Senegal Digital 2025 strategy. This is a pretex to highlight the gaps between official political discourses and the level of deployment of digital infrastructures. The study highlights the need to repoliticize the needs of populations for broadband and very high-speed connections to promote local initiatives for youth participation in Saint-Louis. Indeed, datas relating to access and use of the Internet by young people reveal inequalities linked to household income, the disparity of infrastructure and digital equipment, and the discontinuity in neighborhood development, but also to the adaptability of the internet service marketed. Through urban and explanatory sociology mobilized through the approach of young people’s real access to the Internet, our analyzes have shown at the scale of urban neighborhoods the impact of the actions recommended by those involved in the development of populations’ access to Internet. The result is that the majority of young people are forced to access the Internet through medium-speed mobile networks.
The digital era has ushered in significant advancements in Generative Artificial Intelligence (GAI), particularly through Generative Models and Large Language Models (LLMs) like ChatGPT, revolutionizing educational paradigms. This research, set against the backdrop of Society 5.0 and aimed at sustainable educational practices, utilizes qualitative analysis to explore the impact of Generative AI in various learning environments. It highlights the potential of LLMs to offer personalized learning experiences, democratize education, and enhance global educational outcomes. The study finds that Generative AI revitalizes learning methodologies and supports educational systems’ sustainability by catering to diverse learning needs and breaking down access barriers. In conclusion, the paper discusses the future educational strategies influenced by Generative AI, emphasizing the need for alignment with Society 5.0’s principles to foster adaptable and sustainable educational inclusion.
Global trade is based on coordinated factors, that means labor and products are moved from their point of origin to the point of use. Strategies have a significant impact on global trade because they enable the effective development of goods across international borders. The decision making is an important task for the development of Logistics Supply Chain (LSC) infrastructure and process. Decisions on supplier selection, production schedule, transportation routes, inventory levels, pricing strategies, and other issues need to be made. These decisions may have a big influence on customer service, profitability, operational efficiency, and overall competitiveness. The Artificial Intelligence (AI) approach of Fuzzy Preference Ranking Organization Method for Enrichment Evaluation (Fuzzy-Promethee-2) is used to assess the priority selection of the factors associated with the LSC and evaluate the importance in global trade. The role of AI is very useful compare to statistical analysis in terms of decision making. The computational analysis placed promotion of exports as the most important priority out of five selected attributes in LSC, with infrastructure development. The result suggests that LSC depends heavily on export promotion as the most significant attribute. Infrastructural development also appeared another factor influencing LSC. The foreign investment was ranked the lowest. The evaluated results are useful for the policy makers, supply chain managers and the logistics professionals associated with the supply chain management.
Climate change is a pressing global challenge that requires immediate action. To address this issue effectively, it is essential to engage and empower the younger generation who will shape the future. This abstract presents the experience of Mohamed Bin Zayed University for Humanities (MBZUH) in UAE in promoting climate action through youth empowerment and environmental education.MBZUH has recognized the significance of incorporating environmental education into its curriculum to foster a generation of environmentally conscious individuals. Through a multidimensional approach, the university has developed innovative strategies to empower students, enabling them to become active participants in addressing climate change. These strategies encompass both formal and informal education, leveraging various platforms and partnerships to create a comprehensive learning environment.This study delves into the initiatives undertaken by MBZUH to empower youth in climate action. It explores the incorporation of environmental education across disciplines, integrating sustainability principles into existing courses, and offering specialized programs focused on environmental science and climate studies. Additionally, it highlights the university's efforts in promoting hands-on learning experiences, such as field trips, research projects, and community engagement, to deepen students' understanding of climate issues and inspire practical action.Furthermore, the study examines the role of MBZUH's collaboration with local and international organizations, governmental bodies, and the wider community in fostering youth empowerment and climate action. It showcases successful partnerships that have resulted in impactful initiatives, including awareness campaigns, capacity-building workshops, and youth-led environmental projects.By sharing the experience of MBZUH, this study aims to provide valuable insights and best practices for promoting climate action through youth empowerment and environmental education. It underscores the importance of empowering the next generation with the knowledge, skills, and motivation to become effective agents of change in addressing climate challenges.
This case study employs the Asset-Based Community Development (ABCD) theory as a conceptual framework, utilizing semi-structured interviews combined with focus group discussions to uncover the driving forces influencing rural revitalization and sustainable development within communities. ABCD is considered a transformative approach that emphasizes achieving sustainable development by mobilizing existing resources within the community. Conducted against the backdrop of rural revitalization in China, the study conducts on-site investigations in Yucun, Zhejiang Province. Through the analysis of Yucun’s community development and asset utilization practices, the study reveals successful experiences in various aspects, including community construction, industrial development, cultural heritage preservation, ecological conservation, organizational management, and open economic thinking. The results indicate that Yucun’s sustainable development benefits from its unique resources, leveraging policy advantages, collective financial organizations, and open economic thinking, among other factors. These elements collectively drive rural revitalization in Yucun, leading to sustainable development.
Copyright © by EnPress Publisher. All rights reserved.