This research explores the implementation of streamlined licensing frameworks and consolidated procedures for promoting renewable energy generation worldwide. An in-depth analysis of the challenges faced by renewable energy developers and the corresponding solutions was identified through a series of industry interviews. The study aims to shed light on the key barriers encountered during project development and implementation, as well as the strategies employed to overcome these obstacles. By conducting interviews with professionals from the renewable energy sector, the research uncovers a range of common challenges, including complex permitting processes, regulatory uncertainties, grid integration issues, and financial barriers. These challenges often lead to project delays, increased costs, and limited investment opportunities, thereby hindering the growth of renewable energy generation. However, the interviews also reveal various solutions and best practices employed by industry stakeholders to address these challenges effectively. These solutions encompass the implementation of streamlined licensing procedures, such as single licenses and one-stop services, to simplify and expedite the permitting process. Additionally, the development of clear and stable regulatory frameworks, collaboration between public and private entities, and improved grid infrastructure were identified as key strategies to overcome regulatory and grid integration challenges. The research findings highlight the importance of collaborative efforts between policymakers, industry players, and other relevant stakeholders to create an enabling environment for renewable energy development. By incorporating the identified solutions and best practices, policymakers can streamline regulatory processes, foster public-private partnerships, and enhance grid infrastructure, thus catalyzing the growth of renewable energy projects.
The native peoples of the State of Mexico, especially the Mazahua community, present a high degree of marginality and food vulnerability, causing their inhabitants to be classified within the poor and extremely poor population. The objective of the research is to propose a food vulnerability index for the Mazahua community of the State of Mexico through the induction-deduction method, contrasting the existing literature with a semi-structured exploratory interview to identify the main factors that affect the native peoples. The study population was selected taking into account the number of inhabitants and poverty levels. The sources of information, in addition to documentary sources, were key informants and visits to Mazahua families that facilitated information about the different variables: natural, economic, social, cultural component, degree of adaptability and resilience for the creation and better understanding of the food vulnerability index in the communities under study.
This study meticulously explores the crucial elements precipitating corporate failures in Taiwan during the decade from 1999 to 2009. It proposes a new methodology, combining ANOVA and tuning the parameters of the classification so that its functional form describes the data best. Our analysis reveals the ten paramount factors, including Return on Capital ROA(C) before interest and depreciation, debt ratio percentage, consistent EPS across the last four seasons, Retained Earnings to Total Assets, Working Capital to Total Assets, dependency on borrowing, ratio of Current Liability to Assets, Net Value Per Share (B), the ratio of Working Capital to Equity, and the Liability-Assets Flag. This dual approach enables a more precise identification of the most instrumental variables in leading Taiwanese firms to bankruptcy based only on financial rather than including corporate governance variable. By employing a classification methodology adept at addressing class imbalance, we substantiate the significant influence these factors had on the incidence of bankruptcy among Taiwanese companies that rely solely on financial parameters. Thus, our methodology streamlines variable selection from 95 to 10 critical factors, improving bankruptcy prediction accuracy and outperforming Liang’s 2016 results.
Amid the unfolding Fourth Industrial Revolution, the integration of Logistics 4.0 with agribusiness has emerged as a pivotal nexus, harboring potential for transformational change while concurrently presenting multifaceted challenges. Through a meticulous content analysis, this systematic review delves deeply into the existing body of literature, elucidating the profound capacities of Logistics 4.0 in alleviating supply chain disruptions and underscoring its pivotal role in fostering value co-creation within agro-industrial services. The study sheds light on the transformative potential vested within nascent technologies, such as Internet of Things (IoT), Blockchain, and Artificial Intelligence (AI), and their promise in shaping the future landscape of agribusiness. However, the path forward is not without impediments; the research identifies cardinal barriers, most notably the absence of robust governmental policies and a pervasive lack of awareness, which collectively stymie the seamless incorporation of Industry 4.0 technologies within the realm of agribusiness. Significantly, this inquiry also highlights advancements in sustainable supply chain management, drawing attention to pivotal domains including digitalization, evolving labor paradigms, supply chain financing innovations, and heightened commitments to social responsibility. As we stand on the cusp of technological evolution, the study offers a forward-looking perspective, anticipating a subsequent transition towards Industry 5.0, characterized by the advent of hyper-cognitive systems, synergistic robotics, and AI-centric supply chains. In its culmination, the review presents prospective avenues for future research, emphasizing the indispensable need for relentless exploration and pragmatic solutions. This comprehensive synthesis not only sets the stage for future research endeavors but also extends invaluable insights for practitioners, policymakers, and academicians navigating the intricate labyrinthstry of Logistics 4.0 in agribusiness.
Increasing number of smart cities, the rise of technology and urban population engagement in urban management, and the scarcity of open data for evaluating sustainable urban development determines the necessity of developing new sustainability assessment approaches. This study uses passive crowdsourcing together with the adapted SULPiTER (Sustainable Urban Logistics Planning to Enhance Regional freight transport) methodology to assess the sustainable development of smart cities. The proposed methodology considers economic, environmental, social, transport, communication factors and residents’ satisfaction with the urban environment. The SULPiTER relies on experts in selection of relevant factors and determining their contribution to the value of a sustainability indicator. We propose an alternative approach based on automated data gathering and processing. To implement it, we build an information service around a formal knowledge base that accumulates alternative workflows for estimation of indicators and allows for automatic comparison of alternatives and aggregation of their results. A system architecture was proposed and implemented with the Astana Opinion Mining service as its part that can be adjusted to collect opinions in various impact areas. The findings hold value for early identification of problems, and increasing planning and policies efficiency in sustainable urban development.
This study examines the comparative teaching effectiveness and student satisfaction between native Japanese language teachers (NJLTs) and non-native Japanese language teachers (NNJLTs). Utilizing a sample of 740 students from various educational institutions in Japan, the research employs a quantitative design, including structured questionnaires adapted from established scales. Advanced statistical methods, including factor analysis and multiple regression, were used to analyze the data. The findings reveal no significant differences in student satisfaction and language proficiency between students taught by NJLTs and NNJLTs. Additionally, regression analysis showed that cultural relatability and empathy were not significant predictors of teaching effectiveness, suggesting that factors beyond nativeness influence student outcomes. These results challenge the native-speakerism ideology, highlighting the importance of pedagogical skills, teacher-student rapport, and effective teaching strategies. The study underscores the need for inclusive hiring practices, comprehensive teacher training programs, and collaborative teaching models that leverage the strengths of both NJLTs and NNJLTs. Implications for educational policy, curriculum design, and teacher professional development are discussed, advocating for a balanced approach that values the contributions of both native and non-native teachers. Limitations include the reliance on self-reported data and the specific cultural context of Japan. Future research should explore additional variables, employ longitudinal designs, and utilize mixed-methods approaches to provide a more nuanced understanding of language teaching effectiveness.
Copyright © by EnPress Publisher. All rights reserved.