In this paper, we examine a possible application of ordered weighted average (OWA for short) aggregation operators in the insurance industry. Aggregation operators are essential tools in decision-making when a single value is needed instead of a couple of features. Information aggregation necessarily leads to information loss, at least to a specific extent. Whether we concentrate on extreme values or middle terms, there can be cases when the most important piece of the puzzle is missing. Although the simple or weighted mean considers all the values there is a drawback: the values get the same weight regardless of their magnitude. One possible solution to this issue is the application of the so-called Ordered Weighted Averaging (OWA) operators. This is a broad class of aggregation methods, including the previously mentioned average as a special case. Moreover, using a proper parameter (the so-called orness) one can express the risk awareness of the decision-maker. Using real-life statistical data, we provide a simple model of the decision-making process of insurance companies. The model offers a decision-supporting tool for companies.
Currently, there is a unique situation in the global economy, industrial eras coexist together, there is interaction and transformation of financial systems simultaneously within the framework of Industry 4.0 and Industry 5.0. New, digital resources are entering the economy, intellectual capital is becoming virtual, artificial intelligence is increasingly finding its application in the structure of financial support. Financial intermediation in developing countries is also subject to global trends, the active development of new instruments for developing economies is especially important. The aim of the study is to identify effective ways to develop financial intermediation in Industry 5.0 for the economies of developing countries. Based on the results of the study on the development of financial institutions mediation revealed a problem related to the lack of reasonable tools that could be used to improving the efficiency of the financial intermediaries market, proposed the main directions of such a process: mobilization of savings, distribution financial assets, payment system, risk management and control over market agents involved in financial operations.
This study examines the rapid convergence of the tourism industry with other sectors, driven by the expanding experience economy. A conceptual model was introduced encompassing industry convergence patterns, paths, and effects to assess this convergence’s effectiveness. Using a survey of 392 tourists in Macau, these findings reveal that the tourism industry convergence path and mode positively influence the convergence effect, thereby shaping tourists’ perceived value. Moreover, this study identifies that convergence mode and effect mediate the relationship between the tourism industry convergence path and perceived value. This study validates the efficacy of industrial convergence paths and models in fostering regional industry convergence within the tourism sector. Additionally, it contributes a theoretical framework for evaluating industry convergence effects at a micro level, enhancing both the theoretical understanding and practical applications of Macao’s tourism industry and industrial convergence theory.
The article presents an answer to the current challenge about needs to form methodological approaches to the digital transformation of existing industrial enterprises (EIE). The paper develops a hypothesis that it is advisable to carry out the digital transformation of EIE based on considering it as a complex technical system using model-based system engineering (MBSE). The practical methodology based on MBSE for EIE digital representation creation are presented. It is demonstrated how different system models of EIE is created from a set of entities of the MBSE approach: requirements—unctions—components and corresponding matrices of interconnections. Also the principles and composition of tasks for system architectures creation of EIE digital representation are developed. The practical application of proposed methodology is illustrated by the example of an existing gas distribution station.
In Industry 4.0, the business model innovation plays a crucial role in enabling organizations to stay competitive and capitalize on the opportunities presented by digital transformation. Industry 4.0 is driven by digitalization and characterized by integrating various emerging technologies. These technologies can potentially change traditional business models and create new value propositions for customers. This paper aims to analyze and review the research papers through a bibliometric approach scientifically. The data were extracted from reputable Clarivate Web of Science (WoS) Core Collection sources from 2010 to 2023 (June). However, the publication started in 2018 for the research fields. The results show that scientific publications on research domains have increased significantly from 2020. VOSviewer, R Language, and Microsoft Excel were utilized for analysis. Bibliometric and Scientometric approaches conducted to determine and explore the publication patterns with significant keywords, topical trends, and content clustering better discussions of the publication period. The visualization of the data set related to research trends of Industry 4.0 in relation to Business Model Innovation resulted in several co-occurrence clusters namely: 1) Business Model Innovation; 2) Industry 4.0; 3) Digital transformation; and 4) Technology implementation and analysis. The study results would identify worldwide research trends related to the research domains and recommendations for future research areas.
Copyright © by EnPress Publisher. All rights reserved.