Identify and diagnosis of homogenous units and separating them and eventually planning separately for each unit are considered the most principled way to manage units of forests and creating these trustable maps of forest’s types, plays important role in making optimum decisions for managing forest ecosystems in wide areas. Field method of circulation forest and Parcel explore to determine type of forest require to spend cost and much time. In recent years, providing these maps by using digital classification of remote sensing’s data has been noticed. The important tip to create these units is scale of map. To manage more accurate, it needs larger scale and more accurate maps. Purpose of this research is comparing observed classification of methods to recognize and determine type of forest by using data of Land Cover of Modis satellite with 1 kilometer resolution and on images of OLI sensor of LANDSAT satellite with 30 kilometers resolution by using vegetation indicators and also timely PCA and to create larger scale, better and more accurate resolution maps of homogenous units of forest. Eventually by using of verification, the best method was obtained to classify forest in Golestan province’s forest located on north-east of country.
To analyze the effect of an increase in the quantity or quality of public investment on growth, this paper extends the World Bank’s Long-Term Growth Model (LTGM), by separating the total capital stock into public and private portions, with the former adjusted for its quality. The paper presents the LTGM public capital extension and accompanying freely downloadable Excel-based tool. It also constructs a new infrastructure efficiency index, by combining quality indicators for power, roads, and water as a cardinal measure of the quality of public capital in each country. In the model, public investment generates a larger boost to growth if existing stocks of public capital are low, or if public capital is particularly important in the production function. Through the lens of the model and utilizing newly-collated cross-country data, the paper presents three stylized facts and some related policy implications. First, the measured public capital stock is roughly constant as a share of gross domestic product (GDP) across income groups, which implies that the returns to new public investment, and its effect on growth, are roughly constant across development levels. Second, developing countries are relatively short of private capital, which means that private investment provides the largest boost to growth in low-income countries. Third, low-income countries have the lowest quality of public capital and the lowest efficient public capital stock as a share of GDP. Although this does not affect the returns to public investment, it means that improving the efficiency of public investment has a sizable effect on growth in low-income countries. Quantitatively, a permanent 1 ppt GDP increase in public investment boosts growth by around 0.1–0.2 ppts over the following few years (depending on the parameters), with the effect declining over time.
Control of key technological and benchmark flows of polymer fluids poses a number of challenges. Some of them are nowadays under active investigation and rather far from complete understanding. This review considers such phenomena as both practically important and governed by fundamental laws of rheology and non-linear fluid mechanics. We observe, shear bands in polymeric and other complex structured fluids (like wormlike micellar solutions or soft glassy materials), birefrigerent strands, peculiarities of stress and pressure losses in fluids moving through complex shape domains. These and other processes involve inhomogeneity, instabilities and transient modes creeping in flow fields. In practical aspect this is of interest in such industrial process as polymer flooding for Enhanced Oil Recovery (EOR), where a flow inhomogeneity affects a polymer solution injectivity and residual oil saturation. The value of viscoelasticity in the polymer flooding is estimated. The observation is concluded by some new results on relation between polymer concentration in solutions and viscoelastic traits of benchmark flows.
Attempts were made in the present study to design and develop skeletally modified ether linked tetraglycidyl epoxy resin (TGBAPSB), which is subsequently reinforced with different weight percentages of amine functionalized mullite fiber (F-MF). The F-MF was synthesized by reacting mullite fiber with 3-aminopropyltriethoxysilane (APTES) as coupling agent and the F-MF structure was confirmed by FT-IR. TGBAPSB reinforced with F-MF formulation was cured with 4,4’-diamino diphenyl methane (DDM) to obtain nanocomposite. The surface morphology of TGBAPSB-F-MF epoxy nanocomposites was investigated by XRD, SEM and AFM studies. From the study, it follows that these nanocomposite materials offer enhancement in mechanical, thermal, thermo-mechanical, dielectric properties compared to neat (TGBAPSB) epoxy matrix. Hence we recommend these nanocomposites for a possible use in advanced engineering applications that require both toughness and stiffness.
Soil and groundwater remediation Act was enacted in year 2000. More than ten years has already passed, Monitoring project has been completed,pollution status has been defined,contaminated sites depollution have been launched,a great progress has been made. This paper majorly to depict the extensive farmland soil qauality monittoring which is unpredent in Taiwan and believe has never been done worldwide.
This project was initiated from February 8th, 2002 to August 8th, 2002. The project tasks including digitalization of cadastre, farmland listing, basic information collecting, field investigation, sampling & analysis planning, field sampling, soil sample analysis, data evaluation, suggestion of contaminated farmland control, and analysis of potential pollution sources and transfer routes.
2,251 soil samples,had been sampled from Chang-Hwa County, Yun-Lin County, Nan-Tao County, and Chia-Yi City, and been analyzed in this project. 44% of these samples concentration exceed the soil pollution control standard (Table 1), including 492 farmlands (125.65 ha registered) with total contaminated farming area of 108.38 ha in Chang-Hwa, and 6 farmlands (0.39 ha registered) with total contaminated farming area of 0.39 ha in Nan-Tao County. However, the concentration of samples from Ynu-Lin County and Chia-Yi City do not exceed the soil pollution control standard.
To coordinate with the investigation results of the relative project regarding to water and sediment quality of irrigation channels in Chang-Hwa area, the pollution sources are preliminary concluded to be the irrigation channels surrounding the farmlands in Chang-Hwa area. As to the Nan-Tao County, the abandoned brick furnace plants neighboring the farmland are suspected to be the pollution sources.
The results show that the soil of the investigation area in Chang-Hwa County is the most polluted. Base on the Geostatistics study and the distribution of the irrigation channels; the area neighboring the investigated farmland in this project is suspected being polluted. For the farmlands exceeding soil control standard, Geostatistics method is suggested to coordinate with the information of the irrigation system to clarify the contaminated area so as to be the basis of land control and remediation work. As to the farmlands, not being investigated in this project but with high pollution potential according to the Geostatistics study, detail investigations are suggested. Regarding to soil pollution remediation, it is suggested to coordinate with the effluent control and irrigation channel remediation to achieve an all-out success.
Copyright © by EnPress Publisher. All rights reserved.