This study conducts a comparative analysis of various machine learning and deep learning models for predicting order quantities in supply chain tiers. The models employed include XGBoost, Random Forest, CNN-BiLSTM, Linear Regression, Support Vector Regression (SVR), K-Nearest Neighbors (KNN), Multi-Layer Perceptron (MLP), Recurrent Neural Network (RNN), Bidirectional LSTM (BiLSTM), Bidirectional GRU (BiGRU), Conv1D-BiLSTM, Attention-LSTM, Transformer, and LSTM-CNN hybrid models. Experimental results show that the XGBoost, Random Forest, CNN-BiLSTM, and MLP models exhibit superior predictive performance. In particular, the XGBoost model demonstrates the best results across all performance metrics, attributed to its effective learning of complex data patterns and variable interactions. Although the KNN model also shows perfect predictions with zero error values, this indicates a need for further review of data processing procedures or model validation methods. Conversely, the BiLSTM, BiGRU, and Transformer models exhibit relatively lower performance. Models with moderate performance include Linear Regression, RNN, Conv1D-BiLSTM, Attention-LSTM, and the LSTM-CNN hybrid model, all displaying relatively higher errors and lower coefficients of determination (R²). As a result, tree-based models (XGBoost, Random Forest) and certain deep learning models like CNN-BiLSTM are found to be effective for predicting order quantities in supply chain tiers. In contrast, RNN-based models (BiLSTM, BiGRU) and the Transformer show relatively lower predictive power. Based on these results, we suggest that tree-based models and CNN-based deep learning models should be prioritized when selecting predictive models in practical applications.
This study aims to use dialectical thinking to explore the impacts and responses of Artificial Intelligence (AI) empowerment on students’ personalized learning. The effect of AI empowerment on student personalization is dissected through a literature review and empirical cases. The study finds that AI plays a significant role in promoting personalized learning by enhancing students’ learning effectiveness through intelligent recommendation, automated feedback, improving students’ independent learning ability, and optimizing learning paths, however, the wide application of AI also brings problems such as technological dependence, cheating in exams, weakening of critical thinking ability, educational fairness, and data privacy protection to students. The study proposes recommendations to strengthen technology regulation, enhance the synergy between teachers and AI, and optimize the personalized learning model. AI-enabled personalized learning is expected to play a greater role in improving learning efficiency and educational fairness.
Comparative studies of national values are becoming increasingly important in the context of contemporary globalization processes. An essential condition for the shaping of national values in learners is the enrichment of pedagogical technology with components of digital technology. Both qualitative and quantitative approaches were used in the current study. The purpose of this research is to examine the efficacy of mobile learning in shaping the national values of prospective teachers. The experiment included 180 participants. Diagnostics of the levels of national values formation in the initial stage confirmed the assumption about the low formation of national values among teacher candidates and, consequently, the need for targeted work on their formation. This study demonstrates that significant advances in students’ national values have occurred following the introduction and testing of mobile learning with experimental group (EG) participants to shape national values. The data from this study can serve as the basis for creating strategies for shaping the national values of learners in universities and as a methodological basis for adapting mobile learning for the shaping of national values.
This research aims to develop a Synergy Learning Model in the context of science learning. This research was conducted at Islamic Junior High School, Madrasah Tsanawiyah Negeri 2 Medan, involving 64 students of Grade 7 as the research subject. The method used in this research refers to the development research approach (R&D). In collecting the data, the research employed test and non-test techniques. The results prove that the Synergy learning model developed is effective in improving student learning outcomes. This is evident through the t-test statistical test where the t-count of 4.26 is higher than the t-table of 1.99. In addition, the level of practicality with a score of 3.39 is categorized as practical. This learning model emphasizes the learning process that supports the development of science skills and develops students' competencies in planning, collaborating, and critically reflecting. The findings of this study contribute to pedagogical practices and literature in the field of science learning.
This research focused on the design and implementation of the flipped classroom approach for higher mathematics courses in medical colleges. Out of 120 students, 60 were assigned to the experimental group and 60 to the control group. In the continuous assessment, which included homework and quizzes, the average score of the experimental group was 85.5 ± 5.5, while that of the control group was 75.2 ± 8.1 (P < 0.05). For the final examination, the average score in the experimental group was 88.3 ± 6.2, compared to 78.1 ± 7.3 in the control group (P < 0.01). The participation rate of students in the experimental group was 80.5%, significantly higher than the 50.3% in the control group (P < 0.001). Regarding autonomous learning ability, the experimental group spent an average of 3.2 hours per week on self-study, compared to 1.5 hours in the control group (P < 0.005). Other potential evaluation indicators could involve the percentage of students achieving high scores (90% or above) in problem-solving tasks (25.8% in the experimental group vs. 10.3% in the control group, P < 0.05), and the improvement in retention of key concepts after one month (70.2% in the experimental group vs. 40.5% in the control group, P < 0.01). In conclusion, the flipped classroom approach holds substantial promise in elevating the learning efficacy of higher mathematics courses within medical colleges, offering valuable insights for educational innovation and improvement.
Copyright © by EnPress Publisher. All rights reserved.