The Oued Kert watershed in Morocco is essential for local biodiversity and agriculture, yet it faces significant challenges due to meteorological drought. This research addresses an urgent issue by aiming to understand the impacts of drought on vegetation, which is crucial for food security and water resource management. Despite previous studies on drought, there are significant gaps, including a lack of specific analyses on the seasonal effects of drought on vegetation in this under-researched region, as well as insufficient use of appropriate analytical tools to evaluate these relationships. We utilized the Standardized Precipitation Index (SPI) and the Normalized Difference Vegetation Index (NDVI) to analyze the relationship between precipitation and vegetation health. Our results reveal a very strong correlation between SPI and NDVI in spring (98%) and summer (97%), while correlations in winter and autumn are weaker (66% and 55%). These findings can guide policymakers in developing appropriate strategies and contribute to crop planning and land management. Furthermore, this study could serve as a foundation for awareness and education initiatives on the sustainable management of water and land resources, thereby enhancing the resilience of local ecosystems in the face of environmental challenges.
The native peoples of the State of Mexico, especially the Mazahua community, present a high degree of marginality and food vulnerability, causing their inhabitants to be classified within the poor and extremely poor population. The objective of the research is to propose a food vulnerability index for the Mazahua community of the State of Mexico through the induction-deduction method, contrasting the existing literature with a semi-structured exploratory interview to identify the main factors that affect the native peoples. The study population was selected taking into account the number of inhabitants and poverty levels. The sources of information, in addition to documentary sources, were key informants and visits to Mazahua families that facilitated information about the different variables: natural, economic, social, cultural component, degree of adaptability and resilience for the creation and better understanding of the food vulnerability index in the communities under study.
The major goal of decisions made by a business organization is to enhance business performance. These days, owners, managers and other stakeholders are seeking for opportunities of modelling and automating decisions by analysing the most recent data with the help of artificial intelligence (AI). This study outlines a simple theoretical model framework using internal and external information on current and potential clients and performing calculations followed by immediate updating of contracting probabilities after each sales attempt. This can help increase sales efficiency, revenues, and profits in an easily programmable way and serve as a basis for focusing on the most promising deals customising personal offers of best-selling products for each potential client. The search for new customers is supported by the continuous and systematic collection and analysis of external and internal statistical data, organising them into a unified database, and using a decision support model based on it. As an illustration, the paper presents a fictitious model setup and simulations for an insurance company considering different regions, age groups and genders of clients when analysing probabilities of contracting, average sales and profits per contract. The elements of the model, however, can be generalised or adjusted to any sector. Results show that dynamic targeting strategies based on model calculations and most current information outperform static or non-targeted actions. The process from data to decision-making to improve business performance and the decision itself can be easily algorithmised. The feedback of the results into the model carries the potential for automated self-learning and self-correction. The proposed framework can serve as a basis for a self-sustaining artificial business intelligence system.
Inland Container Depots (ICDs) are inland multi-modal terminals where goods in intermodal loading units can be transferred directly to seaports. The contribution of ICDs to regions’ economic and social growth is undeniable. To achieve the sustainable development of ICDs, evaluating and improving their service quality is critical. This study aims to investigate the factors contributing to the service quality of ICD in a developing country. The data utilized covers some ICDs in the Red River Delta, Vietnam. Regarding analytic methods, descriptive statistics first were run to show the level of aspects of service quality of ICDs. Subsequently, attitudinal statements were analyzed using exploratory factor analysis before linear regression was applied to recognize the factors influencing the service quality of ICDs. Generally, the service quality of ICDs was evaluated at an acceptable level but far from the high one. The results suggested that the four influential service quality factors included location and accessibility, facilities, process and management, and labor. Based on the findings of contributing factors, managerial implications were proposed.
Copyright © by EnPress Publisher. All rights reserved.