Business intelligence is crucial for businesses, from start-ups to multinationals. Examining the role and efficacy of business intelligence (BI) technologies in gathering, processing, and evaluating data to assist responsible management practices and decision-making is crucial in the modern age, especially for educational institutions. This study investigates the impact of Business Intelligence (BI) tools on Knowledge Management (KM) stages and their subsequent influence on Responsible Business Practices Outcomes in the educational sector of the United Arab Emirates. Using a quantitative research design, the study collected data from 406 faculty and staff members across various UAE universities via a structured survey. It analyzed the data using Partial Least Squares Structural Equation Modeling (PLS-SEM). The results revealed a significant positive relationship between the use of BI Tools and the implementation of KM Stages, indicating that the utilization of BI tools is instrumental in enhancing knowledge management processes. However, the direct effect of BI Tools’ usage on responsible business practices’ outcomes was insignificant, suggesting the need for a mediating factor. KM Stages Implementation emerged as a significant mediator, indicating that the benefits of BI tools on responsible business practices are realized through their influence on KM processes. Moderation analyses showed that Institutional Culture, Training, and Expertise significantly moderated the relationship between BI Tools Usage and KM stage implementation, while Support from Management did not have a significant moderating effect. These findings highlight the importance of fostering an enabling institutional culture and investing in training and expertise to leverage the full potential of BI tools in promoting responsible business practices in educational settings. The study contributes to the literature on technology adoption in education and provides practical implications for educational administrators and policymakers seeking to integrate BI tools into their institutional practices.
Uncontrolled economic development often leads to land degradation, a decline in ecosystem services, and negative impacts on community welfare. This study employs water yield (WY) modeling as a method for environmental management, aiming to provide a comprehensive understanding of the relationship between Land Use Land Cover (LULC), Land Use Intensity (LUI), and WY to support sustainable natural resource management in the Cisadane Watershed, Indonesia. The objectives include: (1) analyzing changes in WY for 2010, 2015, and 2021; (2) predicting WY for 2030 and 2050 under two scenarios—Business as Usual (BAU) and Protected Forest Area (PFA); (3) assessing the impacts of LULC and climate change on WY; and (4) exploring the relationship between LUI and WY. The Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model calculates actual and predicted WY conditions, while the Coupling Coordination Degree (CCD) analyzes the LULC-WY relationship. Results indicate that the annual WY in 2021 was 215.8 × 108 m³, reflecting a 30.42% increase from 2010. Predictions show an increasing trend in WY under both scenarios for 2030 and 2050 with different magnitudes. Rainfall contributes 88.99% more dominantly to WY than LULC. Additionally, around 50% of districts exhibited unbalanced coordination between LUI and WY in 2010 and 2020. This study reveals the importance of ESs in sustainable watershed management amidst increasing demand for natural resources due to population growth.
Personality traits refer to enduring patterns of emotions, behaviors, and thoughts that shape an individual’s distinct character, influencing how they perceive and engage with their environment. This quantitative study aims to underscore the influence of personal factors and the role of educational institutions in mapping sustainable green entrepreneurial intentions among university students in Saudia Arabia. To examine the impact of personality traits and entrepreneurship education on students’ green initiatives, the research employs a quantitative research method, collecting data through a structured questionnaire survey from 494 participants who enrolled in the entrepreneurship education at King Faisal University. Structural equation modeling via SmartPLS 3 is employed for data analysis. The study reveals significant associations between the need for achievement, proactiveness, risk-aversion, self-efficacy, and entrepreneurship education with green entrepreneurial intentions. Our research findings demonstrate that the inclusion of entrepreneurship education in the curriculum has a noteworthy and favorable influence on the intention to engage in green entrepreneurship (β = −0.105, t = 3.270, p < 0.001). Additionally, it is worth noting that the desire for achievement remains significantly associated with the intention to engage in green entrepreneurship (β = 0.120, t = 3.588, p < 0.000). Furthermore, the proactive behavior of individuals has a positive and constructive impact on the intention to engage in green entrepreneurship (β = 0.207, t = 4.272, p < 0.000). Similarly, the inclination to avoid risk is found to have a beneficial and significant influence on the intention to engage in green entrepreneurship (β = 0.336, t = 4.594, p < 0.000). Lastly, it is worth highlighting that individuals’ belief in their own abilities, referred to as self-efficacy, is positively and significantly linked to the intention to engage in green entrepreneurship (β = 0.182, t = 2.610, p < 0.009). The research carries social, economic, and academic implications by emphasizing the positive contribution of green entrepreneurs to the future. Practical recommendations for policymakers and decision-makers are provided.
Credit risk assessment is one of the most important aspects of financial decision-making processes. This study presents a systematic review of the literature on the application of Artificial Intelligence (AI) and Machine Learning (ML) techniques in credit risk assessment, offering insights into methodologies, outcomes, and prevalent analysis techniques. Covering studies from diverse regions and countries, the review focuses on AI/ML-based credit risk assessment from consumer and corporate perspectives. Employing the PRISMA framework, Antecedents, Decisions, and Outcomes (ADO) framework and stringent inclusion criteria, the review analyses geographic focus, methodologies, results, and analytical techniques. It examines a wide array of datasets and approaches, from traditional statistical methods to advanced AI/ML and deep learning techniques, emphasizing their impact on improving lending practices and ensuring fairness for borrowers. The discussion section critically evaluates the contributions and limitations of existing research papers, providing novel insights and comprehensive coverage. This review highlights the international scope of research in this field, with contributions from various countries providing diverse perspectives. This systematic review enhances understanding of the evolving landscape of credit risk assessment and offers valuable insights into the application, challenges, and opportunities of AI and ML in this critical financial domain. By comparing findings with existing survey papers, this review identifies novel insights and contributions, making it a valuable resource for researchers, practitioners, and policymakers in the financial industry.
The purpose of this study is to investigate different factors associated with remote online home-based learning (thereafter named OHL), including technical system quality, perceived quality of contents, perceived ease of use, and perceived usefulness in relation to the satisfaction of undergraduate students following the post-COVID-19 pandemic in Malaysia. Additionally, the mediating roles of attitude are also investigated. Two hundred questionnaires were distributed using judgmental sampling method and 156 completed responses were collected. The data were subsequently analyzed using PLS-SEM. The findings imply that the OHL system is an effective method although it is challenging to operate. In terms of perceived technical system quality, OHL is currently more gratifying for students; however, some have reported that the quality of the content delivered via the remote system is still unsatisfactory. Moreover, the study found that attitude is a significant determinant of undergraduates’ satisfaction with OHL. This study contributes to the advancement of current knowledge by inspecting the factors of the Undergraduate Level OHL System using the mediating roles of attitude. In terms of underpinning theories, Technology Acceptance Model and Information System Model were employed as the guiding principles of the current study.
This study investigates the impact of human resource management (HRM) practices on employee retention and job satisfaction within Malaysia’s IT industry. The research centered on middle-management executives from the top 10 IT companies in the Greater Klang Valley and Penang. Using a self-administered questionnaire, the study gathered data on demographic characteristics, HRM practices, and employee retention, with the questionnaire design drawing from established literature and validated measuring scales. The study employed the PLS 4.0 method for analyzing structural relationships and tested various hypotheses regarding HRM practices and employee retention. Key findings revealed that work-life balance did not significantly impact employee retention. Conversely, job security positively influenced employee retention. Notably, rewards, recognition, and training and development were found to be insignificant in predicting employee retention. Additionally, the study explored the mediating role of job satisfaction but found it did not mediate the relationship between work-life balance and employee retention nor between job security and employee retention. The research highlighted that HRM practices have diverse effects on employee retention in Malaysia’s IT sector. Acknowledging limitations like sample size and research design, the study suggests the need for further research to deepen understanding in this area.
Copyright © by EnPress Publisher. All rights reserved.