5G technology is transforming healthcare by enhancing precision, efficiency, and connectivity in diagnostics, treatments, and remote monitoring. Its integration with AI and IoT is set to revolutionize healthcare standards. This study aims to establish the state of the art in research on 5G technology and its impact on healthcare innovation. A systematic review of 79 papers from digital libraries such as IEEE Xplore, Scopus, Springer, ScienceDirect, and ResearchGate was conducted, covering publications from 2018 to 2024. Among the reviewed papers, China and India emerge as leaders in 5G health-related publications. Scopus, Springer Link, and IEEE Xplore house the majority of first-quartile (Q1) papers, whereas Science Direct and other sources show a higher proportion in the second quartile (Q2) and lower rankings. The predominance of Q1 papers in Scopus, Springer Link, and IEEE Xplore underscores these platforms’ influence and recognition, reflecting significant advancements in both practice and theory, and highlighting the expanding application of 5G technology in healthcare.
Mediating role of artificial intelligence in the relationship between higher education quality and scientific research ethics among faculty members: A Study in carrying out the study, specific research objectives were derived, and based on the derived objectives, null hypotheses were formulated and tested for the study. This study, thus, employed survey research design. This study’s population comprised postgraduate students from Middle Eastern University, Jordan, with 1200 students. Using the population, a sample size of 291 respondents was selected based on Krecie and Morgan The students in the sample completed Google Forms questionnaires. The data were statistically processed, and the analysis’s most significant level was 0.25. The research questions were analyzed using descriptive statistics, and the null hypothesis was tested using Pearson Product Moment Correlational Analysis (PPMC). Also, the study showed a significant relationship between artificial intelligence and the quality of higher education and the relationship of significance between artificial intelligence and ethics in scientific research. The researcher suggested a need for ongoing education, cross-discipline cooperation, and the development of solid ethical frameworks for the integration ethics of AI academia.
Indonesia, as a maritime country, has many coastal areas with fishing villages that have significant potential, especially in sociological, economic, and environmental aspects, to be developed as models for sustainable development. Indonesia, with its long-standing fishing traditions, showcases the abundant potential and traditional that could help address global challenges such as climate change, rapid urbanization, and environmental and economic issues. This study aims to develop a conceptual model for sustainable cities and communities based on local potential and Wisdom towards the establishment of a Blue Village in the fishing village of Mundu Pesisir, Cirebon, Indonesia. The urgency of this study lies in the importance of developing sustainable strategies to address these challenges in coastal towns. This study involves an interdisciplinary team, including experts in sociology, social welfare, architecture, law, economics, and information technology. Through the identification of local natural and sociocultural resources, as well as the formulation of sustainable development strategies, this study develops a conceptual Blue Village model that can be applied to other coastal villages. The method employed in this study is qualitative descriptive, involving the steps of conducting a literature review, analyzing local potential, organizing focus group discussions, conducting interviews, and finalizing the conceptual model. The study employed, a purposive sampling technique, involving 110 participants. The results of the study include the modeling of a sustainable city and community development based on local potential and Wisdom aimed at creating Blue Villages in Indonesia, and It is expected to make a significant contribution to the creation of competitive and sustainable coastal areas capable of addressing the challenges of climate change and socioeconomic dynamics in the future.
This study uses a Time-Varying Parameter Stochastic Volatility Vector Autoregression (TVP-SV-VAR) model to conduct an empirical analysis of the dynamic effects of China’s stock market volatility on the agricultural loan market and its channels. The results show that the relationship between stock market and agricultural loan market volatility is time varying and is always positive. The investor sentiment is a major conduit through which the effect takes place. This time-varying effect and transmission mechanism are most apparent between 2011 and 2017 and have since waned and stabilized. These have significant implications for the stable and orderly development of the agricultural loan market, highlighting the importance of the sound financial market system and timely policy, better market monitoring and early warning system and the formation of a mature and sound agricultural credit mechanism.
A numerical investigation utilizing water as the working fluid was conducted on a 2D closed loop pulsating heat pipe (CLPHP) using the CFD software AnsysFluent19.0. This computational fluid dynamics (CFD) investigation explores three instances where there is a consistent input of heat flux in the evaporator region, but the temperatures in the condenser region differ across the cases. In each case, the condenser temperatures are set at 10 ℃, 20 ℃, and 30 ℃ respectively. The transient simulation is conducted with uniform time steps of 10 s. Generally, the heat rejection medium operated at a lower temperature performs better than at a higher temperature. In this CFD study the thermal resistances gets decreased with the decreasing value of condenser temperatures and the deviation of 35.31% of thermal resistance gets decreased with the condenser region operated at the temperature of 10 ℃.
The present study focuses on improving Cognitive Radio Networks (CRNs) based on applying machine learning to spectrum sensing in remote learning scenarios. Remote education requires connection dependability and continuity that can be affected by the scarcity of the amount of usable spectrum and suboptimal spectrum usage. The solution for the proposed problem utilizes deep learning approaches, namely CNN and LSTM networks, to enhance the spectrum detection probability (92% detection accuracy) and consequently reduce the number of false alarms (5% false alarm rate) to maximize spectrum utilization efficiency. By developing the cooperative spectrum sensing where many users share their data, the system makes detection more reliable and energy-saving (achieving 92% energy efficiency) which is crucial for sustaining stable connections in educational scenarios. This approach addresses critical challenges in remote education by ensuring scalability across diverse network conditions and maintaining performance on resource-constrained devices like tablets and IoT sensors. Combining CRNs with new technologies like IoT and 5G improves their capabilities and allows these networks to meet the constantly changing loads of distant educational systems. This approach presents another prospect to spectrum management dilemmas in that education delivery needs are met optimally from any STI irrespective of the availability of resources in the locale. The results show that together with machine learning, CRNs can be considered a viable path to improving the networks’ performance in the context of remote learning and advancing the future of education in the digital environment. This work also focuses on how machine learning has enabled the enhancement of CRNs for education and provides robust solutions that can meet the increasing needs of online learning.
Copyright © by EnPress Publisher. All rights reserved.