Named Entity Recognition (NER), a core task in Information Extraction (IE) alongside Relation Extraction (RE), identifies and extracts entities like place and person names in various domains. NER has improved business processes in both public and private sectors but remains underutilized in government institutions, especially in developing countries like Indonesia. This study examines which government fields have utilized NER over the past five years, evaluates system performance, identifies common methods, highlights countries with significant adoption, and outlines current challenges. Over 64 international studies from 15 countries were selected using PRISMA 2020 guidelines. The findings are synthesized into a preliminary ontology design for Government NER.
With the continuous development and rapid progress of Internet technology, the technology of “Internet +” has been widely used in almost all walks of life, including education. The new learning mode of “Internet + education” is changing learners’ learning habits, and this learning mode has become a hot issue that scholars pay attention to. Although there is much research on blended learning, the research on the influencing factors of blended learning in Chinese private colleges and universities is limited. In this paper, the questionnaire was designed based on the theory of planning behavior and the technical acceptance model theory, and distribute these questionnaires to undergraduates at Harbin Cambridge University, a private university in China, and 162 valid questionnaires were collected. Analysis was performed by multiple linear regression and structural equation model method. It is found that college students’ blended learning effect is positively correlated with perceived usefulness, interactive behavior, and learning acceptance, while perceived ease of use and learning atmosphere have no significant influence on the learning effect. This study further found that perceived usefulness and interactive behavior can influence the effect of blended learning through the mediating effect of learning acceptance. The results of this study provide a new idea for the study of blended learning; that is, students will know how to improve the effectiveness of blended learning, and also provide a valuable reference for teachers to solve the problem of how to improve the quality and effectiveness of blended classroom teaching.
The power of Artificial Intelligence (AI) combined with the surgeons’ expertise leads to breakthroughs in surgical care, bringing new hope to patients. Utilizing deep learning-based computer vision techniques in surgical procedures will enhance the healthcare industry. Laparoscopic surgery holds excellent potential for computer vision due to the abundance of real-time laparoscopic recordings captured by digital cameras containing significant unexplored information. Furthermore, with computing power resources becoming increasingly accessible and Machine Learning methods expanding across various industries, the potential for AI in healthcare is vast. There are several objectives of AI’s contribution to laparoscopic surgery; one is an image guidance system to identify anatomical structures in real-time. However, few studies are concerned with intraoperative anatomy recognition in laparoscopic surgery. This study provides a comprehensive review of the current state-of-the-art semantic segmentation techniques, which can guide surgeons during laparoscopic procedures by identifying specific anatomical structures for dissection or avoiding hazardous areas. This review aims to enhance research in AI for surgery to guide innovations towards more successful experiments that can be applied in real-world clinical settings. This AI contribution could revolutionize the field of laparoscopic surgery and improve patient outcomes.
This research presents an innovative perspective on vocational education by merging the Instructional System Design (ISD) model with Innovation in Thailand Vocational Education and Training (InnoTVET) principles. Targeted at nursing students, the course aims to cultivate entrepreneurial skills while connecting vocational training with healthcare policy development. It aligns with global movements in Education for Sustainable Development (ESD), addressing the increasing demand for nurse entrepreneurs who can devise creative healthcare solutions within established policy frameworks. By employing mastery learning techniques alongside design thinking, the course effectively bridges theoretical concepts with practical applications. The mixed-methods study underlines relevant contribution in students’ entrepreneurial mindsets. Results from t-tests reveal the students’ ability to identify opportunities, engage in innovative thinking, and work within policy frameworks. Findings are supported by qualitative data, which demonstrate enhanced confidence, improved problem-solving capacities, and a deeper understanding of healthcare market dynamics. Although expert evaluation of student projects is scheduled for future iterations, the initial outcomes reinforce the course’s success. The course is structured into seven modules spanning 45 hours, featuring active learning components, five business-oriented assignments, and a final innovation project that integrates the curriculum’s core elements. This design ensures students develop both practical expertise and interdisciplinary insights critical to healthcare innovation. The integration of InnoTVET and ISD principles in nursing education sets a precedent for vocational education reform. This example of a successful nursepreneurship initiative provides a scalable model for enhancing vocational programs in diverse fields, fostering innovation and sustainability.
The potential role of self-regulated learning as mediator has been deeply investigated by researchers in recent years. There is limited systematic literature review being done to investigate the role of self-regulated learning as mediator in the students’ academic learning. Therefore, searching studies in the databases WOS (Web of Science), SCOPUS, APA (American Psychological Association) PsycInfo, and ERIC (Education Resources Information Center), the present study conducted a systematic literature review on 32 studies published between 2015 and 2024 to summarize what kind of psychological factors influence students’ academic performance through self-regulated learning and assess the potential mediating role of self-regulated learning in this process. The results show that self-efficacy, emotions and motivation are significant predictors of academic achievement and self-regulated learning act as an important mediator in this relationship. An important implication was obtained that researchers can probe into the influence of specific dimensions of self-efficacy on learning performance through self-regulated learning and the influence of positive emotions such as resilience on learning outcomes with self-regulated learning as mediator.
The usage of cybersecurity is growing steadily because it is beneficial to us. When people use cybersecurity, they can easily protect their valuable data. Today, everyone is connected through the internet. It’s much easier for a thief to connect important data through cyber-attacks. Everyone needs cybersecurity to protect their precious personal data and sustainable infrastructure development in data science. However, systems protecting our data using the existing cybersecurity systems is difficult. There are different types of cybersecurity threats. It can be phishing, malware, ransomware, and so on. To prevent these attacks, people need advanced cybersecurity systems. Many software helps to prevent cyber-attacks. However, these are not able to early detect suspicious internet threat exchanges. This research used machine learning models in cybersecurity to enhance threat detection. Reducing cyberattacks internet and enhancing data protection; this system makes it possible to browse anywhere through the internet securely. The Kaggle dataset was collected to build technology to detect untrustworthy online threat exchanges early. To obtain better results and accuracy, a few pre-processing approaches were applied. Feature engineering is applied to the dataset to improve the quality of data. Ultimately, the random forest, gradient boosting, XGBoost, and Light GBM were used to achieve our goal. Random forest obtained 96% accuracy, which is the best and helpful to get a good outcome for the social development in the cybersecurity system.
Copyright © by EnPress Publisher. All rights reserved.