This article presents an analysis of Russia’s outward foreign direct investment based on the balance of payments. The country has been affected by the “Dutch disease,” characterized by a heavy reliance on the mining industry and revenues from oil and gas exports. The financial account reveals a consistent outflow of capital from Russia, surpassing inflows. A significant portion of domestic investment goes abroad, often to offshore destinations. This capital outflow has not been fully offset by foreign capital inflows. These findings underscore the challenges faced by Russia in managing its financial position, including the need to address capital outflows, diversify the economy, and reduce dependence on raw material exports. Furthermore, this article aims to identify the presence of Russian capital in OECD countries by comparing data from the Central Bank of Russia and the OECD. The analysis reveals significant discrepancies between the two datasets, primarily due to unavailable or confidential information in the OECD dataset. These variations can also be attributed to differences in methodology and the specific nature of Russian outward direct investments, particularly those involving offshore jurisdictions. As a result, accurately determining the extent of Russian capital in OECD countries based on the available data becomes a challenging task (including for the tourism industry as well).
Sketching on stimulus-organism-response theory, this study aims to investigate the mediating effect of environmental passion on the relationship of the environmentally specific servant leadership with employees’ green behavior. Using purposive sampling approach, the authors adopted one month time-lagged approach to collected data from 232 academic employees in higher education institutions of China. Response rate in this study is 46.40%. The partial least-structural equation modeling (PLS-SEM) analysis was conducted in the smartpls 4.0 software to test the proposed hypotheses. The current empirical findings confirm that environmentally specific servant leadership significantly positively influence employee’s environmental passion and environmental passion significantly positively affects the employee’s workplace green behaviors. This current finding offered support in favor of mediating impact of environmental passion on the “environmentally specific servant leadership-employees workplace green behaviors” relationship. To the best of authors, this study is among pioneers’ studies to investigate the integrated relationship of environmentally specific servant leadership, environmental passion and green behavior in higher education institutions context of China. Limitations and implication have been elaborated at the end.
The purpose of this paper is to explore the performance of ridge regression and the random forest model improved by genetic algorithm in predicting the Boston house price data set and conduct a comparative analysis. To achieve it, the data is divided into training set and test set according to the ratio of 70-30. The RidgeCV library is used to select the best regularization parameter for the Ridge regression model, and for the random forest model, the genetic algorithm is used to optimize the model's hyperparameters. The result shows that compared with ridge regression, the random forest model improved by genetic algorithm can perform better in the regression problem of Boston house prices.
The advent of the era of big data has brought great changes to accounting work, and vocational colleges and universities, as the main place for cultivating application-oriented new business talents, need to change the way of talent training in time in the face of this change. By describing the impact of the era of big data on the demand for new business talents, this paper analyzes the analysis of the training of new business and scientific and technological talents in vocational colleges and universities in the era of big data from the perspectives of talent training target positioning, professional curriculum setting and teacher quality, accurately locates the talent training goals of new business professional groups in vocational colleges, scientifically sets up the curriculum system, and comprehensively improves the teaching staff.
The Cisadane Watershed is in a critical state, which has expanded residential areas upstream of Cisadane. Changes in land use and cover can impact a region’s hydrological characteristics. The Soil and Water Assessment Tool (SWAT) is a hydrological model that can simulate the hydrological characteristics of the watershed affected by land use. This study aims to evaluate the impact of land use change on the hydrological characteristics of the Cisadane watershed using SWAT under different land use scenarios. The models were calibrated and validated, and the results showed satisfactory agreement between observed and simulated streamflow. The main river channel is based on the results of the watershed delineation process, with the watershed boundary consisting of 85 sub-watersheds. The hydrological characteristics showed that the maximum flow rate (Q max) was 12.30 m3/s, and the minimum flow rate (Q min) was 5.50 m3/s. The study area’s distribution of future land use scenarios includes business as usual (BAU), protecting paddy fields (PPF), and protecting forest areas (PFA). The BAU scenario had the worst effect on hydrological responses due to the decreasing forests and paddy fields. The PFA scenario yielded the most favourable hydrological response, achieving a notable reduction from the baseline BAU in surface flow, lateral flow, and groundwater by 2%, 7%, and 2%, respectively. This was attributed to enhanced water infiltration, alongside increases in water yield and evapotranspiration of 3% and 15%, respectively. l Therefore, it is vital to maintain green vegetation and conserve land to support sustainable water availability.
This study explores the feminization of poverty and the dynamics of the care economy in rural areas, focusing on the municipality of Génova, Quindío, Colombia. The novelty of this study lies in its analysis of the compounded effects of the COVID-19 pandemic on women’s economic participation and care responsibilities in a rural context, offering insights relevant to Latin America. This study addresses the critical problem of how increased caregiving responsibilities and labor informality during the pandemic have disproportionately impacted economically active women, exacerbating gender inequalities. The objective is to analyze the relationship between the care economy and feminization of poverty, providing policy recommendations for post-pandemic recovery in rural settings. The methodology consisted of a two-stage approach. In the first stage, a probabilistic stratified sampling design was applied using data from the Colombian National Population and Housing Census and the Génova, Quindío, and Colombia Municipal Panel. In the second stage, fieldwork was conducted with a sample of 347 women using the RedCap application for data collection. The results indicate a significant increase in unpaid domestic and caregiving work during the pandemic, particularly for the elderly, disabled, and children. Additionally, labor informality increased, further limiting economic opportunities for women. The key conclusion is that public policies aimed at reducing gender disparities in rural labor markets must prioritize caregiving support and formal employment opportunities for women. These findings suggest that addressing the care economy is crucial for closing gender gaps and fostering equitable economic recovery in rural Latin American areas.
Copyright © by EnPress Publisher. All rights reserved.