The increasing demand for electricity and the need to reduce carbon emissions have made optimizing energy usage and promoting sustainability critical in the modern economy. This research paper explores the design and implementation of an Intelligent-Electricity Consumption and Billing Information System (IEBCIS), focusing on its role in addressing electricity sustainability challenges. Using the Design Science Research (DSR) methodology, the system’s architecture collects, analyses, and visualizes electricity usage data, providing users with valuable insights into their consumption patterns. The research involved developing and validating the IEBCIS prototype, with results demonstrating enhanced real-time monitoring, load shedding schedules, and billing information. These results were validated through user testing and feedback, contributing to the scientific knowledge of intelligent energy management systems. The contributions of this research include the development of a framework for intelligent energy management and the integration of data-driven insights to optimize electricity consumption, reduce costs, and promote sustainable energy use. This research was conducted over a time scope of two years (24 months) and entails design, development, pilot test implementation and validation phases.
This paper focuses on examining the relationship among organizational factor, work-related factor, psychological factor, personal factor and the commitment of oil palm smallholders toward Malaysian Sustainable Palm Oil (MSPO) certification. The study employed a descriptive research methodology and a structured survey instrument to gather data from oil palm smallholders (n = 441) through simple random sampling technique. Data analysis was conducted using SPSS and partial least square structural equation modeling (PLS-SEM) to test the proposed relationship. The findings reveal that organizational factors significantly impact the affective (β = 0.345, p < 0.05), normative (β = 0.424, p < 0.05), and continuance commitment (β = 0.339, p < 0.05) of oil palm smallholders. Additionally, work-related factors show a substantial effect on these same dimensions of commitment; affective (β = 0.277, p < 0.05), normative (β = 0.263, p < 0.05), and continuance (β = 0.413, p < 0.05). Psychological factors significantly impact the affective (β = 0.216, p < 0.05) and normative commitment (β = 0.146, p < 0.05), with no statistically significant influence on continuance commitment. Conversely, personal factors exhibit limited influence, affecting only continuance commitment (β = 0.104, p < 0.05) to a minor degree, with no statistically significant impact on affective and normative commitment. The present research is among the few empirical findings that have examined the oil palm smallholders’ commitment towards MSPO certification. By emphasizing the role of organizational and work-related factors, the study offers valuable insights for stakeholders within the oil palm sector, highlighting areas to enhance smallholder commitment toward sustainability standards. Consequently, this study contributes a unique perspective to the existing body of literature on sustainable practices in the oil palm industry.
Every production day in Nigeria, and in other oil producing countries, millions of barrels of produced water is generated. Being very toxic, remediation of the produced water before discharge into environment or re-use is very essential. An eco-friendly and cost effective approach is hereby reported for remediative pre-treatment of produced water (PW) obtained from Nigerian oilfield. In this approach, Telfairia occidentalis stem extract-silver nanoparticles (TOSE-AgNPs) were synthesized, characterized and applied as bio-based adsorbent for treating the PW in situ. The nanoparticles were of average size 42.8 nm ± 5.3 nm, spherical to round shaped and mainly composed of nitrogen and oxygen as major atoms on the surface. Owing to the effect of addition of TOSE-AgNPs, the initially high levels (mg/L) of Total Dissolved Solids (TDS), Biological Oxygen Demand (BOD) and TSS of 607, 3.78 and 48.4 in the PW were reduced to 381, 1.22 and 19.6, respectively, whereas DO and COD improved from 161 and 48.4 to 276 and 19.6 respectively, most of which fell within WHO and US-EPA safe limits. Particularly, the added TOSE-AgNPs efficiently removed Pb (II) ions from the PW at temperatures between 25 ℃ to 50 ℃. Removal of TOSE-AgNPs occurred through the adsorption mechanism and was dependent contact time, temperature and dose of TOSE-AgNPs added. Optimal remediation was achieved with 0.5 g/L TOSE-AgNPs at 30 ℃ after 5 h contact time. Adsorption of Pb (Ⅱ) ions on TOSE-AgNPs was spontaneous and physical in nature with remediation efficiency of over 82% of the Pb (Ⅱ) ions in solution. Instead of discarding the stem of Telfairia occidentalis, it can be extracted and prepared into a new material and applied in the oilfield as reported here for the first time.
The research aimed to: 1) analyze components and indicators of digital transformation leadership among school administrators, 2) assess their leadership needs, and 3) develop mechanism models to promote this leadership. A mixed-method approach was applied, involving three sample groups: 8 experts, 406 administrators, and 7 experts. Data collection tools included semi-structured interviews, leadership scales, needs assessments, and focus group discussions, with analysis performed through construct validity testing, needs assessment, and content analysis. The findings revealed: 1) The components and indicators of digital transformation leadership showed structural validity, as confirmed by the model’s alignment with empirical data (Chi-Square = 82.3, df = 65, p = 0.072, CFI = 0.998, TLI = 0.997, RMR = 0.00965, RMSEA = 0.0256). 2) Among the leadership components, “innovative knowledge” ranked highest in need (PNImodified = 0.075), followed by “ideological influence” (0.066), “consideration of individuality” (0.055), “intellectual stimulation” (0.052), and “inspiration” (0.053). 3) Mechanism models for promoting leadership emphasized enhancing these five components to strengthen administrators’ skills in applying technology, managing teaching and development plans, and fostering innovation. Administrators were encouraged to tailor strategies to individual needs, inspire personnel, and create a commitment to organizational change and development. These mechanisms aim to equip administrators to effectively lead transformations, motivate staff, and drive educational institutions to adapt and thrive in evolving environments.
Since the proposal of the low-carbon economy plan, all countries have deeply realized that the economic model of high energy and high emission poses a threat to human life. Therefore, in order to enable the economy to have a longer-term development and comply with international low-carbon policies, enterprises need to speed up the transformation from a high-carbon to a low-carbon economy. Unfortunately, due to the massive volume of data, developing a low-carbon economic enterprise management model might be challenging, and there is no way to get more precise forecast data. This study tackles the challenge of developing a low-carbon enterprise management mode based on the grey digital paradigm, with the aim of finding solutions to these issues. This paper adopts the method of grey digital model, analyzes the strategy of the enterprise to build the model, and makes a comparative experiment on the accuracy and performance of the model in this paper. The results show that the values of MAPE, MSE and MAE of the model in this paper are the lowest. And the r^2 of the model in this paper is also the highest. The MAPE value of the model in this paper is 0.275, the MSE is 0.001, and the MAE is 0.003. These three indicators are much lower than other models, indicating that the model has high prediction accuracy. r2 is 0.9997, which is much higher than other models, indicating that the performance of this model is superior. With the support of this model, the efficiency of building an enterprise model has been effectively improved. As a result, developing an enterprise management model for the low-carbon economy based on the gray numerical model can offer businesses new perspectives into how to quicken the shift to the low-carbon economy.
Copyright © by EnPress Publisher. All rights reserved.