Energy shortages and environmental damage have become serious problems facing the society today. Biomass can be a renewable energy source, which large-scale development and utilization are of great significance to industry and social life. Biomass pyrolysis technology can achieve effective utilization of biomass energy. It is necessary to optimize the pyrolysis reaction technology and device for realize the industrialization and large-scale production of biomass energy.
In this paper, electrically conductive composites comprised of silicone rubber and titanium diboride (TiB2) were synthesized by conventional mixing methods. Fine particles of TiB2 (in micron size) and 10 parts per hundred parts of rubber (phr) proportion of carbon black (XC-72) were used to make the composites with HTV silicone rubber. The composites were cured at appropriate temperature and pressure and the effect on the electrical properties was studied. The resistance of the silicone rubber is ~ 1015Ω which decreases to 1–2 kΩ in case of composites with negligible effect of heat ageing. The hardness increases by ~ 35% simultaneous to the decrease of ~ 47% in the tensile strength. Morphological characterization indicates the homogeneous dispersion of the fillers in the composite.
Fire, a phenomenon occurs in most parts of the world and causes severe financial losses, even, irreparable damages. Many parameters are involved in the occurrence of a fire; some of which are constant over time (at least in a fire cycle), but the others are dynamic and vary over time. Unlike the earthquake, the disturbance of fire depends on a set of physical, chemical, and biological relations. Monitoring the changes to predict the occurrence of fire is efficient in forest management. Method: In this research, the Persian and English databases were structurally searched using the keywords of fire risk modeling, fire risk, fire risk prediction, remote sensing and the reviewed papers that predicted the fire risk in the field of remote sensing and geographic information system were retrieved. Then, the modeling and zoning data of fire risk prediction were extracted and analyzed in a descriptive manner. Accordingly, the study was conducted in 1995-2017. Findings: Fuzzy analytic hierarchy process (AHP) zoning method was more practical among the applied methods and the plant moisture stress measurement was the most efficient among the remote sensing indices. Discussion and Conclusion: The findings indicate that RS and GIS are effective tools in the study of fire risk prediction.
Increasing water consumption has increased using of synthetic nutritional methods for enriching groundwater resources. Artificial feeding is a method that can save excess water for using in low level water time in underground. The purpose of this study is to evaluate the performance of the flood dispersal and artificial feeding system in the Red Garden of Shahr-e-Daghshan and improving, saving quality of the groundwater table in the area. In order to investigate the performance of these plans, an area of 1570 km2 was considered in the Southern of Shah-Reza. The statistics data from 5 years before the design of the plans (1986-2002) related to flood control fluctuations in 20 observation wells and many indicator Qanat were surveyed in this area. The annual fluctuations in the level of the station show a rise in the level of the station after the depletion of the plan. Dewatering of the first and second turns, with an increase of more than one meter above groundwater level, has had the highest impact on the level of groundwater table in the region. Reduced permeability at sediment levels, wasted flood through evaporation and wasteful exploitation of groundwater resources, cause to loss of the impact on the increase in the level and quality of groundwater in the area, especially in the dry, drought season and recent high droughts.
In this study, the influence of sewage sludge ash (SSA) waste particle contents on the mechanical properties and interlaminar fracture toughness for mode I and mode II delamination of S-glass fiber-reinforced epoxy composites was investigated. Composite laminate specimens for tensile, flexural double-cantilever beam (DCB), and end-notched fracture (ENF) tests were prepared and tested according to ASTM standards with 5, 10, 15, and 20 wt% SSA-filled S-glass/epoxy composites. Property improvement reasons were explained based on optical and scanning electron microscopy. The highest improvement in tensile and flexural strength was obtained with a 10 wt% content of SSA. The highest mode I and mode II interlaminar fracture toughness’s were obtained with 15 wt% content of SSA. The mode I and mode II interlaminar fracture toughness improved by 33% and 63.6%, respectively, compared to the composite without SSA.
Copyright © by EnPress Publisher. All rights reserved.