Nanoparticle V2O5 is prepared by the measurement of X-ray diffraction (XRD) and atomic force microscopy (AFM) analyses. The crystallite size = 19.59 nm, optical energy gap = 2.6 eV, an average particle size of 29.58 nm and, RMS roughness of ~6.8 nm. Also, Fourier transformer infrared spectrophotometer (FTIR) showed a porous free morphology with homogeneity and uniformity on the sample surface. The film surface exhibited no apparent cracking and, the grains exhibited large nicely separated conical columnar growth combined grains throughout the surface with coalescence of some columnar grains at a few places. The fabrication of a thin film of V2O5 NPs/PSi heterojunction photodetector was characterized and investigated.
Salicylaldehyde imine transition metal catalyst is a kind of olefin polymerization catalyst that is widely used in the coordination of salicylaldehyde imine ligand and pre-transition metal. Salicylaldehyde imine ligands have the characteristic of easily inserting different substituents via organic synthesis. Therefore, the regulation of the polymerization activity, polymerization product, and product distribution can be achieved by changing the steric hindrance effect, the electronic effect, and the number of metal active sites near the catalytic active center. The development status of the transition metal catalyst of salicylaldehyde imide was summarized in this paper. The influence of the ligand structure of the salicylaldehyde imide transition metal catalyst on the catalytic performance, which involved the high selectivity of ethylene trimerization, ethylene/α-olefin, polar monomer copolymerization, ethylene polymerization production, ultra-high molecular weight polyethylene, and many other areas of olefin polymerization, was elaborated, providing references for further study and industrial applications of this catalyst.
This study aims to elucidate the digital transformation process in Tunisian companies, identify its driving factors, and explain its key success factors. We examine a sample of 70 companies across various economic sectors using a Multinomial Logistic regression to assess the impact of digital strategy, corporate culture, and leadership on digital transformation success. The dependent variable “digital maturity” is categorized into low, medium, and high, with medium serving as the reference category. The results indicate a significant and positive effect of digital strategy on digital transformation success. Leadership influences companies at a low level of digital maturity but does not significantly impact those at a high maturity level. Corporate culture does not significantly affect digital transformation. Digital strategy is crucial for the success of digital transformation in Tunisian companies, while leadership plays a role primarily at lower maturity levels. Corporate culture, however, does not significantly contribute to digital maturity. The study provides insights for Tunisian companies and policymakers to focus on developing robust digital strategies and leadership qualities to enhance digital transformation efforts. This research expands the theoretical base on digital transformation in the Tunisian context, identifying critical success factors and barriers, and confirming the significant role of digital strategy in successful digital transformations.
Accurate temperature control during the induction heating process of carbon fiber reinforced polymer (CFRP) is crucial for the curing effect of the material. This paper first builds a finite element model of induction heating, which combines the actual fiber structure and resin matrix, and systematically analyzes the heating mechanism and temperature field distribution of CFRP during the heating process. Based on the temperature distribution and variation observed in the material heating process, a PID control method optimized by the sparrow search algorithm is proposed, which effectively reduces the temperature overshoot and improves the response speed. The experiment verifies the effectiveness of the algorithm in controlling the temperature of the CFRP plate during the induction heating process. This study provides an effective control strategy and research method to improve the accuracy of temperature control in the induction heating process of CFRP, which helps to improve the results in this field.
Copyright © by EnPress Publisher. All rights reserved.