The effectiveness and efficiency of e-learning system in industry significantly depend on users’ acceptance and adoption. This is specifically determined by external and internal factors represented by subjective norms (SN) and experience (XP), both believed to affect users’ perceived usefulness (PU) and perceived ease of use (PEOU). Users’ acceptance of e-learning system is influenced by the immensity of region, often hampered by inadequate infrastructure support. Therefore, this study aimed to investigate behavioral intention to use e-learning in the Indonesian insurance industry by applying Technology Acceptance Model (TAM). To achieve this objective, Jabotabek and Non-Jabotabek regions were used as moderating variables in all related hypotheses. An online survey was conducted to obtain data from 800 respondents who were Indonesian insurance industry employees. Subsequently, Structural Equation Model (SEM) was used to evaluate the hypotheses, and Multi-Group Analysis (MGA) to examine the role of region. The results showed that out of the seven hypotheses tested, only one was rejected. Furthermore, XP had no significant effect on PU, and the most significant correlation was found between PEOU and PU. In each relationship path model, the role of region (Jabodetabek and Non Jabodetabek) had no significant differences. These results were expected to provide valuable insights into the components of e-learning acceptability for the development of a user-friendly system in the insurance industry.
This paper studies the patent race problem of communication enterprises investing in communication technologies, and constructs a portfolio optimization model which considers the expected returns, investment risks, and replacement costs, in order to achieve the dual goals of maximizing the net investment income of backward enterprises and minimizing the expected investment risk. Through numerical experimental analysis, the optimal investment portfolio strategy under different risk levels and the impact of different risk levels on the net income of lagging company are obtained. The research results show that due to the backward research in the first stage of the backward enterprises, when their own investment decision-making power is relatively high, they can focus on the development of self-interested key technology areas in order to achieve the victory of the patent race.
This study investigates seismic risk and potential impacts of future earthquakes in the Sunda Strait region, known for its susceptibility to significant seismic events due to the subduction of the Indo-Australian Plate beneath the Eurasian Plate. The aim is to assess the likelihood of major earthquakes, estimate their impact, and propose strategies to mitigate associated risks. The research uses historical seismic data and probabilistic models to forecast earthquakes with magnitudes ranging from 6.0 to 8.2 Mw. The Gutenberg-Richter model helps project potential earthquake occurrences and their impacts. The findings suggest that the probability of a major earthquake could occur as early as 2026–2027, with a more significant event estimated to likely occur around 2031. Economic estimates for a 7.8–8.2 Mw earthquake suggest potential damage of up to USD 1.255 billion with significant loss of life. The study identifies key vulnerabilities, such as inadequate building foundations and ineffective disaster management infrastructure, which could worsen the impact of future seismic events. In conclusion, the research highlights the urgent need for comprehensive seismic risk mitigation strategies. Recommendations include reinforcing infrastructure to comply with seismic standards, implementing advanced early warning systems, and enhancing public education on earthquake preparedness. Additionally, government policies must address these issues by increasing funding for disaster management, enforcing building regulations, and incorporating traditional knowledge into construction practices. These measures are essential to reducing future earthquake impacts and improving community resilience.
Relational database models offer a pathway for the storage, standardization, and analysis of factors influencing national sports development. While existing research delves into the factors linked with sporting success, there remains an unexplored avenue for the design of databases that seamlessly integrate quantitative analyses of these factors. This study aims to design a relational database to store and analyse quantitative sport development data by employing information technology tools. The database design was carried out in three phases: (i) exploratory study for context analysis, identification, and delimitation of the data scope; (ii) data extraction from primary sources and cataloguing; (iii) database design to allow an integrated analysis of different dimensions and production of quantitative indicators. An entity-relationship diagram and an entity-relationship model were built to organize and store information relating to sports, organizations, people, investments, venues, facilities, materials, events, and sports results, enabling the sharing of data across tables and avoiding redundancies. This strategy demonstrated potential for future knowledge advancement by including the establishment of perpetual data updates through coding and web scraping. This, in turn, empowers the continuous evaluation and vigilance of organizational performance metrics and sports development policies, aligning seamlessly with the journal’s focus on cutting-edge methodologies in the realm of digital technology.
Copyright © by EnPress Publisher. All rights reserved.