This paper aims to contribute with a literature review on the use of AI for cleaner production throughout industries in the consideration of AI’s advantage within the environment, economy, and society. The survey report based on the analysis of research papers from the recent literature from leading database sources such as Scopus, the Web of Science, IEEE Xplore, Science Direct, Springer Link, and Google Scholar identifies the strategic strengths of AI in optimizing the resources, minimizing the carbon footprint and eradicating wastage with the help of machined learning, neural networks and predictive analytics. AI integration presents vast aspects of environmental gains, including such enhancements as a marked reduction concerning the energy and materials consumed along with enhanced ways of handling the resulting waste. On the economic aspect, AI enhances the processes that lead to better efficiency and lower costs in the market on the other hand, on the social aspect, the application of any AI influences how people are utilized as workers/clients in the community. The following are some of the limitations towards AI adoption as proposed by the review of related literature; The best things that come with AI are yet accompanied by some disadvantages; there are implementation costs, data privacy, as well as system integration that may be a major disadvantage. The review envisages that with the continuation of the AI development in the following years, the optic is going to be the accentuation on the enhancement of the process of feeding the data in real-time mode, IoT connections, and the implementation of the proper ethical approaches toward the AI launching for all segments of the society. The conclusions provide precise suggestions to the people working in the industry to adopt the AI advancements appropriately and at the same time, encourage the lawmakers to create favorable legal environments to enable the ethical uses of AI. This review therefore calls for more targeted partnerships between the academia, industry, and government to harness the full potential of AI for sustainable industrial practices worldwide.
Biomimicry is increasingly being used to drive sustainable constructional development in recent years. By emulating the designs and processes of nature, biomimicry offers a wealth of opportunities to create innovative and environmentally friendly solutions. Biomimicry in industrial development: versatile applications, advantages in construction. The text emphasizes the contribution of bio-mimetic technologies to sustainability and resilience in structural design, material selection, energy efficiency, and sensor technology. Aside from addressing technical constraints and ethical concerns, we address challenges and limitations associated with adopting biomimicry. A quantitative research approach is implemented, and respondents from the construction industry rank biomimicry principles as the optimal approach to enhance sustainability in the industry. Demographic and descriptive analyses are underway. By working together, sharing knowledge, and innovating responsibly, we suggest approaches to tackle these obstacles and fully leverage the transformative power of biomimicry in promoting sustainable construction industry practices. In an evolving global environment, biomimicry reduces environmental impact and enhances efficiency, resilience, and competitiveness in construction industries.
This study delves into the role of pig farming in advancing Sustainable Development Goal (SDG) 8—Decent work and economic growth in Buffalo City, Eastern Cape. The absence of meaningful employment opportunities and genuine economic progress has remained a significant economic obstacle in South Africa for an extended period. Through a mixed-method approach, the study examines the transformative impact of pig farming as an economic avenue in achieving SDG 8. Through interviews and questionnaires with employed individuals engaged in pig farming in Buffalo City, the study further examines pig farming’s vital role as a source of decent work and economic growth. The study reveals inadequate government support and empowerment for pig farming in Buffalo City despite pig farming’s resilience and potential in mitigating socio-economic vulnerabilities and supporting community’s livelihoods. To enhance pig farming initiatives, this study recommends government’s prioritization of an enabling environment and empowerment measures for the thriving of pig farming in Buffalo City. By facilitating supportive policies and infrastructures, the government can empower locals in Buffalo City to leverage pig farming’s potential in achieving SDG 8.
SMEs are characterized by a number of flaws that threaten their survival and counteract them from reaching high levels of growth and development. Access to finance is the primary problem facing these companies in the Moroccan context. Aware of the effective and potential impacts of SMEs on the country as a whole, the Moroccan Government through a variety of actors has mobilized its efforts in a number of ways to support this population of companies. This study assesses the extent to which actors within the Moroccan SMEs’ financing ecosystem align to support these companies and develop their ability to access external financing. Using the MACTOR model, based on an in-depth contextual analysis and expert interviews, our findings suggest that Morocco’s SMEs’ financing ecosystem is skewed, with high levels of convergence between its components.
This study applies machine learning methods such as Decision Tree (CART) and Random Forest to classify drought intensity based on meteorological data. The goal of the study was to evaluate the effectiveness of these methods for drought classification and their use in water resource management and agriculture. The methodology involved using two machine learning models that analyzed temperature and humidity indicators, as well as wind speed indicators. The models were trained and tested on real meteorological data to assess their accuracy and identify key factors affecting predictions. Results showed that the Random Forest model achieved the highest accuracy of 94.4% when analyzing temperature and humidity indicators, while the Decision Tree (CART) achieved an accuracy of 93.2%. When analyzing wind speed indicators, the models’ accuracies were 91.3% and 93.0%, respectively. Feature importance revealed that atmospheric pressure, temperature at 2 m, and wind speed are key factors influencing drought intensity. One of the study’s limitations was the insufficient amount of data for high drought levels (classes 4 and 5), indicating the need for further data collection. The innovation of this study lies in the integration of various meteorological parameters to build drought classification models, achieving high prediction accuracy. Unlike previous studies, our approach demonstrates that using a wide range of meteorological data can significantly improve drought classification accuracy. Significant findings include the necessity to expand the dataset and integrate additional climatic parameters to improve models and enhance their reliability.
Copyright © by EnPress Publisher. All rights reserved.