Historically, women have faced progressive and persistent obstacles and prejudices preventing them from fully participating in and receiving recognition for scientific research in academia. In Panama, local gender studies specifically targeting the area of academia are scarce. However, to close the gender gap, this article tries to uncover the realities of women academics who dare to research and do science in Panama, beyond statistics. A virtual survey was distributed from May to August 2023, in which 921 academics (45% men and 55% women) affiliated with public universities in Panama were surveyed. Through an empirical analysis from a gender perspective, participants’ attitudes and perceptions on the effects of the covid-19 pandemic on research, the quality of higher education in Panama, the dissemination and transmission of knowledge, and research as an adjuvant to higher education were revealed. Findings reiterate the gender bias and underrepresentation of women in Panamanian public universities and the lack of commitment to their capacity building, research, and dissemination of results. It also confirmed that, despite the covid-19 pandemic and its negative effects in all areas, the importance and recognition of scientific research were highlighted, allowing women academics to excel competitively and take advantage of new opportunities in their career development.
Inflammation of the lungs, called pneumonia, is a disease characterized by inflammation of the air sacs that interfere with the exchange of oxygen and carbon dioxide. It is caused by a variety of infectious organisms, including viruses, bacteria, fungus, and parasites. Pneumonia is more common in people who have pre-existing lung diseases or compromised immune systems, and it primarily affects small children and the elderly. Diagnosis of pneumonia can be difficult, especially when relying on medical imaging, because symptoms may not be immediately apparent. Convolutional neural networks (CNNs) have recently shown potential in medical imaging applications. A CNN-based deep learning model is being built as part of ongoing research to aid in the detection of pneumonia using chest X-ray images. The dataset used for training and evaluation includes images of people with normal lung conditions as well as photos of people with pneumonia. Various preprocessing procedures, such as data augmentation, normalization, and scaling, were used to improve the accuracy of pneumonia diagnosis and extract significant features. In this study, a framework for deep learning with four pre-trained CNN models—InceptionNet, ResNet, VGG16, and DenseNet—was used. To take use of its key advantages, transfer learning utilizing DenseNet was used. During training, the loss function was minimized using the Adam optimizer. The suggested approach seeks to improve early diagnosis and enable fast intervention for pneumonia cases by leveraging the advantages of several CNN models. The outcomes show that CNN-based deep learning models may successfully diagnose pneumonia in chest X-ray pictures.
Finding the right technique to optimize a complex problem is not an easy task. There are hundreds of methods, especially in the field of metaheuristics suitable for solving NP-hard problems. Most metaheuristic research is characterized by developing a new algorithm for a task, modifying or improving an existing technique. The overall rate of reuse of metaheuristics is small. Many problems in the field of logistics are complex and NP-hard, so metaheuristics can adequately solve them. The purpose of this paper is to promote more frequent reuse of algorithms in the field of logistics. For this, a framework is presented, where tasks are analyzed and categorized in a new way in terms of variables or based on the type of task. A lot of emphasis is placed on whether the nature of a task is discrete or continuous. Metaheuristics are also analyzed from a new approach: the focus of the study is that, based on literature, an algorithm has already effectively solved mostly discrete or continuous problems. An algorithm is not modified and adapted to a problem, but methods that provide a possible good solution for a task type are collected. A kind of reverse optimization is presented, which can help the reuse and industrial application of metaheuristics. The paper also contributes to providing proof of the difficulties in the applicability of metaheuristics. The revealed research difficulties can help improve the quality of the field and, by initiating many additional research questions, it can improve the real application of metaheuristic algorithms to specific problems. The paper helps with decision support in logistics in the selection of applied optimization methods. We tested the effectiveness of the selection method on a specific task, and it was proven that the functional structure can help the decision when choosing the appropriate algorithm.
Based on the application of phase diagram calculation technique (CALPHAD), the Fe-Nd-B magnetic materials were investigated, and alloy design and microstructure evolution concerning. According to the thermodynamic database of Fe-Nd-B ternary system, the equilibrium solidification process of Fe78Nd15B7 alloy is simulated, and we explained well the reason of this experimental phenomenon by the metastable extension of the equilibrium phase diagram.
A fresh interest has been accorded to metal iodides due to their fascinating physicochemical properties such as high ionic conductivity, variable optical properties, and high thermal stabilities in making micro and macro devices. Breakthroughs in cathodic preparation and metallization of metal iodides revealed new opportunities for using these compounds in various fields, especially in energy conversion and materials with luminescent and sensory properties. In energy storage metal iodides are being looked at due to their potential to enhance battery performance, in optoelectronics the property of the metal iodides is available to create efficient LEDs and solar cells. Further, their application in sensing devices, especially in environmental and medical monitoring has been quite mentioned due to their response towards environmental changes such as heat or light. Nevertheless, some challenges are still in question, including material stability, scale-up opportunities, and compatibility with other technologies. This work highlights the groundbreaking potential of metal iodide-based nanomaterials, emphasizing their transformative role in innovation and their promise for future advancements.
Copyright © by EnPress Publisher. All rights reserved.