Raising public awareness of maritime risk and disseminating information about disaster prevention and reduction are the most frequent ways that the government incorporates citizens in marine disaster risk management (DRM). However, these measures are deemed to be insufficient to drive the participation rate. This study aims to understand the participation trend of citizens in marine DRM. On the basis of the theory of citizen participation’s ladder, public participation within marine DRM is categorized into non-participation, tokenistic participation, and substantive participation. Using organization theory, the government’s strategies for encouraging participation are classified into common approach (raising awareness), structural approach (innovating instruments), and cultural approach (developing citizenship). Considering the vignette experiment of 403 citizens in a coastal city of China that has historically been subject to marine disasters, it was found that effectiveness of the strategies, from highest to lowest, are citizenship development, risk education, and instruments innovation. At the individual level, psychological characteristics such as trust in the government, past disaster experience, and knowledge of marine DRM did not significantly influence citizens’ participation preferences. At the government level, even when citizens are informed about new participatory mechanisms and tools, they still tend to be unwilling to share responsibilities. However, self-efficacy and understanding the beneficial outcomes of their participation in marine (DRM) can positively impact the willingness to participate. The results show that to encourage public participation substantively in the marine DRM, it is important to cultivate a sense of civic duty and enhance citizens’ sense of ownership, fostering a closer and more equitable partnership between the state and society.
This study aims to develop and validate a strategic model tailored to the unique challenges and contexts faced by micro, small, and medium-sized enterprises (MSMEs) in Ecuador, enhancing their operational efficiency and access to financing. Employing a quantitative approach, the research utilized a non-experimental, cross-sectional design to gather data from a sample of 358 companies. The study revealed that MSMEs are significantly hindered by limited access to financing, lack of managerial skills, and technological gaps. Despite these challenges, MSMEs demonstrated considerable adaptability and resilience, underscoring their critical role in the local economy. The strategic model proposed leverages Porter’s Diamond Model to identify and address the specific competitive and operational challenges encountered by these enterprises. Key findings include the necessity for enhanced financial literacy, simplified regulatory frameworks, and the integration of digital technologies to improve competitiveness. The proposed model focuses on strategic training, fostering innovation, and creating a more supportive financing environment. The implications of this study are profound, suggesting that policymakers and practitioners should streamline regulatory processes, enhance financial and technological support frameworks, and provide tailored training programs. These strategies are intended to bolster the sustainability and growth of MSMEs, contributing to broader economic development. This research contributes to the academic literature by providing empirical evidence on the challenges faced by MSMEs in developing economies and proposing a contextually adapted strategic model to mitigate these challenges, thereby enhancing their economic impact and sustainability.
Application-oriented universities play a vital role in transporting application-oriented talent to regional industries and industries. In this paper, we discuss the significance and path of building experimental centers for economic management in application-oriented universities and highlight their role in student learning, school-business cooperation and social development. At the same time, it summarizes the problems found during the construction of the experimental center at case University and suggests some improvements, which serve as a reference for the construction of economic management experimental centers at similar universities.
Managing business development related to the innovation of intelligent supply chains is an important task for many companies in the modern world. The study of management mechanisms, their content and interrelations of elements contributes to the optimization of business processes and improvement of efficiency. This article examines the experience of China in the context of the implementation of intelligent supply chains. The study uses the methods of thematic search and systematic literature review. The purpose of the article is to analyze current views on intelligent supply chain management and identify effective business management practices in this area. The analysis included publications devoted to various aspects of supply chain management, innovation, and the implementation of digital technologies. The main findings of the article are as follows: Firstly, the key elements of intelligent supply chain management mechanisms are identified, secondly, successful experiences are summarized and the main challenges that companies face in their implementation are identified. In addition, the article focuses on the gaps in research related to the analysis of successful experiences and the reasons for achieving them.
This study applies machine learning methods such as Decision Tree (CART) and Random Forest to classify drought intensity based on meteorological data. The goal of the study was to evaluate the effectiveness of these methods for drought classification and their use in water resource management and agriculture. The methodology involved using two machine learning models that analyzed temperature and humidity indicators, as well as wind speed indicators. The models were trained and tested on real meteorological data to assess their accuracy and identify key factors affecting predictions. Results showed that the Random Forest model achieved the highest accuracy of 94.4% when analyzing temperature and humidity indicators, while the Decision Tree (CART) achieved an accuracy of 93.2%. When analyzing wind speed indicators, the models’ accuracies were 91.3% and 93.0%, respectively. Feature importance revealed that atmospheric pressure, temperature at 2 m, and wind speed are key factors influencing drought intensity. One of the study’s limitations was the insufficient amount of data for high drought levels (classes 4 and 5), indicating the need for further data collection. The innovation of this study lies in the integration of various meteorological parameters to build drought classification models, achieving high prediction accuracy. Unlike previous studies, our approach demonstrates that using a wide range of meteorological data can significantly improve drought classification accuracy. Significant findings include the necessity to expand the dataset and integrate additional climatic parameters to improve models and enhance their reliability.
Copyright © by EnPress Publisher. All rights reserved.