In light of swift urbanization and the lack of precise land use maps in urban regions, comprehending land use patterns becomes vital for efficient planning and promoting sustainable development. The objective of this study is to assess the land use pattern in order to catalyze sustainable township development in the study area. The procedure adopted involved acquiring the cadastral layout plan of the study area, scanning, and digitizing it. Additionally, satellite imagery of the area was obtained, and both the cadastral plan and satellite imagery were geo-referenced and digitized using ArcGIS 9.2 software. These processes resulted in reasonable accuracy, with a root mean square (RMS) error of 0.002 inches, surpassing the standard of 0.004 inches. The digitized cadastral plan and satellite imagery were overlaid to produce a layered digital map of the area. A social survey of the area was conducted to identify the specific use of individual plots. Furthermore, a relational database system was created in ArcCatalog to facilitate data management and querying. The research findings demonstrated the approach's effectiveness in enabling queries for the use of any particular plot, making it adaptable to a wide range of inquiries. Notably, the study revealed the diverse purposes for which different plots were utilized, including residential, commercial, educational, and lodging. An essential aspect of land use mapping is identifying areas prone to risks and hazards, such as rising sea levels, flooding, drought, and fire. The research contributes to sustainable township development by pinpointing these vulnerable zones and providing valuable insights for urban planning and risk mitigation strategies. This is a valuable resource for urban planners, policymakers, and stakeholders, enabling them to make informed decisions to optimize land use and promote sustainable development in the study area.
This study explores the application of the co-design approach in participatory planning for the development of Kambo Tourism Village, located at the intersection of urban and rural areas in Indonesia. By combining the Delphi Consensus Method and Analytic Hierarchy Process (AHP), the study successfully identified and prioritized key aspects in the planning process, with a primary focus on local community participation. The results indicate that the co-design approach is effective in creating a masterplan that not only aligns with the needs and aspirations of the community but also supports the sustainability and inclusiveness of tourism village development. AHP results reveal that local community participation was assigned the highest priority with a weight of 0.35, followed by stakeholder collaboration with a weight of 0.27. Community participation not only contributed to the creation of a well-structured tourism village masterplan but also enhanced human resource quality and strengthened stakeholder collaboration. The impact of this participatory planning process includes increased national recognition for Kambo Village, the village’s success in receiving awards, and local economic growth. Moreover, the study identified a gap between the calculated and expected weights in the AHP process, highlighting the complexity of aligning diverse stakeholder perspectives. These findings offer both practical and theoretical contributions and open opportunities for further research to address the challenges of participatory planning in the context of tourism villages.
The paper considers an important problem of the successful development of social qualities in an individual using machine learning methods. Social qualities play an important role in forming personal and professional lives, and their development is becoming relevant in modern society. The paper presents an overview of modern research in social psychology and machine learning; besides, it describes the data analysis method to identify factors influencing success in the development of social qualities. By analyzing large amounts of data collected from various sources, the authors of the paper use machine learning algorithms, such as Kohonen maps, decision tree and neural networks, to identify relationships between different variables, including education, environment, personal characteristics, and the development of social skills. Experiments were conducted to analyze the considered datasets, which included the introduction of methods to find dependencies between the input and output parameters. Machine learning introduction to find factors influencing the development of individual social qualities has varying dependence accuracy. The study results could be useful for both practical purposes and further scientific research in social psychology and machine learning. The paper represents an important contribution to understanding the factors that contribute to the successful development of individual social skills and could be useful in the development of programs and interventions in this area. The main objective of the research was to study the functionalities of the machine learning algorithms and various models to predict the students’s success in learning.
Nowadays, urban ecosystems require major transformations aimed at addressing the current challenges of urbanization. In recent decades, policy makers have increasingly turned their attention to the smart city paradigm, recognizing its potential to promote positive changes. The smart city, through the conscious use of technologies and sustainability principles, allows for urban development. The scientific literature on smart cities as catalysts of public value continues to develop rapidly and there is a need to systematize its knowledge structure. Through a three-phase methodological approach, combining bibliometric, network and content analyses, this study provides a systematic review of the scientific literature in this field. The bibliometric results showed that public value is experiencing an evolutionary trend in smart cities, representing a challenging research topic for scholars. Network analysis of keyword co-occurrences identified five different clusters of related topics in the analyzed field. Content analysis revealed a strong focus on stakeholder engagement as a lever to co-create public value and a greater emphasis on social equity over technological innovation and environmental protection. Furthermore, it was observed that although environmental concerns were prioritized during the policy planning phase, their importance steadily decreased as the operational phases progressed.
Purpose: This study aims to clarify the meaning of sport analysis, explore the contributions derived from sporting event analysts, and highlights the importance of responsible sport gambling. It also investigates how sustainable practices can be integrated into sports analysis to enhance social well-being. Design/methodology/approach: Secondary text data from government documents, news articles, and website information were extracted by searching keywords such as sports lottery and sports analysis in traditional Chinese, and then analyzed to establish the research framework and scope. Subsequently, 18 interviews were conducted with stakeholders to gain deeper insights. Findings: The content analyses reveals that sport analysis tends to be sport data science. Sporting event analysts may contribute to improving the performance of players or a team, enhancing spectator sports, and increasing sports lottery revenues. In the leisure aspect, the professionalism of sporting event analysts not only increases epistemic and entertainment values in spectator sports but also boosts engagement with sport lotteries. To ensure these enhancements remain beneficial, it is vital to emphasize responsible sport gambling and sustainable practices that protect vulnerable groups and promote long-term health benefits for those involved in sports. The integration of sustainable practices in sport analysis and the expertise of sporting event analysts can significantly advance economic and social development by generating funds through sport lottery industry for athlete programs, sports infrastructure, and educational initiatives, aligning with multiple Sustainable Development Goals. Additionally, the professionalism of these analysts may enhance public understanding and engagement of sports, promoting increased participation in sports, reducing healthcare costs, and contributing to the development of a healthier and more resilient society. Originality: Emphasizing responsible sports gambling is essential to the sustainability of sports lotteries and the role of sporting event analysts.
Copyright © by EnPress Publisher. All rights reserved.