Nanotechnology is a subject that studies, processes, and applies various functional materials, equipment, and systems, and controls substances on a nanoscale. Nanomedicine refers to its application in diagnosing, treating, preventing, and monitoring various diseases. Drugs administered through eye drops must travel a long distance to avoid various eye barriers reaching the posterior segment of the eye, to achieve the lowest drug level. This review focuses on nanotechnology-based eye disease treatment systems and highlights the obstacles affecting the drug management of eyes and nano-systems for the treatment of eye diseases. This paper summarizes the development prospect of nanotechnology and the challenges it faces in the treatment and diagnosis of ophthalmic diseases, to provide information and new ideas for the implementation of treatment and the development of a refractory eye disease management system.
In order to optimize the environmental factors for cucumber growth, a fertilizer and water control system was designed based on the Internet of Things (IoT) system. The IoT system monitors environmental factors such as temperature, light and soil Ec value, and uses image processing to obtain four growth indicators such as cucumber stem height, stem diameter size, number of leaves and number of fruit set to establish a single growth indicator model for temperature, light, soil Ec value and growth stage, and the four growth indicators were fused to obtain the comprehensive growth indicator Ic for cucumber, and calculates its deviation to determine the cucumber growth status. Based on the integrated growth index Ic of cucumber, a soil Ec control model was established to provide the optimal environment and fertilizer ration for cucumber at different growth stages to achieve stable and high yield of cucumber.
The influence of mining activity on the environment on the environment belongs to the most negative industrial influences. Mine subsidence on the surface can be a result of many deep underground mining activities. The present study offers the theory to the specific case of the deformation vectors solution in a case of disruption of the data homogeneity of the geodetic network structure in the monitoring station during periodical measurements in mine subsidence. The theory was developed for the mine subsidence at the abandoned magnesite mine of Košice-Bankov near the city of Košice in East Slovakia. The outputs from the deformation survey were implemented into geographical information system (GIS) applications to a process of gradual reclamation of whole mining landscape in the magnesite mine vicinity. After completion of the mining operations and liquidation of the mine company, it was necessary to determine the exact edges of the mine subsidence of Košice-Bankov with the zones of residual ground motion in order to implement a comprehensive reclamation of the devastated mining landscape. Requirement of knowledge about stability of the former mine subsidence was necessary for starting the reclamation work. Outputs from the present specific solutions of the deformation vectors confirmed the multi-year stability of the mine subsidence in the area of interest. Some numerical and graphical results from the deformation vectors survey in the abandoned magnesite mine of Košice-Bankov are presented. The obtained results were transformed into GIS for the needs of the municipality of Košice City to the implementation of the reclamation activities in the mining territory of Košice-Bankov.
Land use or land cover (LU/LC) mapping serves as a kind of basic information for land resource study. Detecting and analyzing the quantitative changes along the earth’s surface has become necessary and advantageous because it can result in proper planning, which would ultimately result in improvement in infrastructure development, economic and industrial growth. The LU/LC pattern in Madurai City, Tamil Nadu, has undergone a significant change over the past two decades due to accelerated urbanization. In this study, LU/LC change dynamics were investigated by the combined use of satellite remote sensing and geographical information system. To understand the LU/LC change in Madurai City, different land use categories and their spatial as well as temporal variability have been studied over a period of seven years (1999-2006), by analyzing Landsat images for the years 1999 and 2006 respectively with the help of ArcGIS 9.3 and ERDAS Imagine 9.1 software. This results show that geospatial technology is able to effectively capture the spatio-temporal trend of the landscape patterns associated with urbanization in this region.
We reviewed the research on super-hydrophobic materials. Firstly, we introduced the basic principles of super-hydrophobic materials, including the Young equation, Wenzel model, and Cassie model. Then, we summarized the main preparation methods and research results of super-hydrophobic materials, such as the template method, soft etching method, electrospinning method, and sol-gel method. Among them, the electrospinning method that has developed in recent years is a new technology for preparing micro/nanofibers. Finally, the applications of super-hydrophobic materials in the field of coatings, fabric and filter material, anti-fogging, and antibacterial were introduced, and the problems existing in the preparation of super-hydrophobic materials were pointed out, such as unavailable industrialized production, high cost, and poor durability of the materials. Therefore, it is necessary to make a further study on the application of the materials in the selection, preparation, and post-treatment.
Magnesium hydroxide/melamine phosphate borate (nano MH/MPB), a novel nano-composition intumescent flame retardant, was synthesized with the in-situ reaction method from MgCl2·6H2O sodium hydroxide (NaOH) and melamine phosphate borate (MPB) in the absence of H2O. The structure of the product was confirmed by EDAX IR and XRD. The effects of reaction temperature and time on the dimension of magnesium hydroxide were observed. The effects of mass ratio of magnesium hydroxide to MPB on the flame retardancy of nano-MH/MPB/EP were examined with the limiting oxygen test. The results show that the optimal condition of synthesis of MH/MPB is mMH/mMPB = 0.25, reacting under 75 ℃ for 30 minutes. Finally, the mechanism for flame retardancy of nano-MH/MPB/EP was pilot studied by means of IR of char layer and TG of MH/MPB.
Copyright © by EnPress Publisher. All rights reserved.