Objective: to achieve accurately and rapidly the mapping of agricultural land use and crop distribution at the township scale. Methods: this study, based on specific methods, such as, time-series remote sensing index threshold classification and maximum likelihood, classifies each land use type and extracts crop spatial information, under the guidance of Sentinel-2A remote sensing images, to carry out agricultural land use mapping at township scale. And the mapping concerned will be verified by comparing with an agricultural spatial information map of a 0.5 m resolution, which is based on WorldVieW-2 fused images. Results: (1) the area accuracy of grain and oil crop land, vegetable land, agricultural facilities land and garden land is fairly good, with 92.93%, 98.98%, 95.71% and 95.14% respectively, and within 8% variation from actual area; (2) the spatial information of plot boundary, farmland road network, and canal network produced by OSM road data and historical high-resolution images was overlayed with the classification results of Sentinel-2A multi-spectral image for mapping, which can improve the accuracy of plot boundary information of classification results for the image with 10 m resolution. Conclusions: the use of multi-source information fusion method, agricultural land use and crop distribution space big data produced by Sentinel-2A optical image, can effectively improve the accuracy and timeliness of land use mapping at the township scale, to provide technical reference for the application of remote sensing big data to carry out agricultural landscape analysis at the township scale, optimization and adjustment of agricultural structure, etc.
Phytomediation is an environmentally friendly green rehabilitation technology that is often incorporated with an application to improve calcium peroxide and phytohormones required for the growth of agricultural plants with the expectation to improve the effectiveness of plant rehabilitation. This study mainly consists of two parts: (1) water culture experiment and (2) pot culture experiment. In the water culture experiment, we attempt to understand the influence of the addition of calcium peroxide, phytohormones (IAA and GA3) and a chelating agent on the growth of sunflower plants. However, in the pot culture experiment, when hormones and the chelating agent EDTA are introduced to different plant groups at the same time, if the nutrition in the water required by plants is not available, the addition of the hormone cannot negate the toxicity caused by EDTA. In terms of calcium peroxide, due to quick release of oxygen in water, this study fails to apply calcium peroxide to the water culture experiment.
When the pot culture experiment is used to examine the influence of hormones at different concentration levels on the growth of sunflowers, GA3 10-8 M is reported to have the optimal effectiveness, followed by IAA 10-8 M; IAA 10-12 M has the lowest effectiveness. According to an accumulation analysis of heavy metals at different levels, GA3 concentrates in leaves to transport nutrition in soil to leaves. This results in an excellent TF value of 2.329G of GA3 than 1.845 of the control group indicating that the addition of the hormone and chelating agent to GA3 increases the TF value and the chelating agent is beneficial to the sunflower plant. If we examine phytoattenuation ability, the one-month experiment was divided into three stages for ten days each. The concentration level of heavy metals in the soil at each stage dropped continuously while that of the control group decreased from 31.63 mg/kg to 23.96 mg/kg, GA3 from 32.09 mg/kg to 23.04 mg/kg and EDTA from 30.65 mg/kg to 25.93 mg/kg indicating the quickest growth period of the sunflowers from the formation of the bud to blossom. During the stage, the quick upward transportation of nutrition results in quick accumulation of heavy metals; the accumulated speed of heavy metals is found higher than that of directly planted plants. This study shows an improvement in the effectiveness of the addition of hormones on plant extraction and when rehabilitation is incorporated with sunflowers with the beginning bud formation, better treatment effectiveness can be reached.
The management of Mediterranean mountains need to know whether or not the flora is adapted to respond to fire and, if so, through what mechanisms. Serpentine outcrops constitute particular ecosystems in the Mediterranean Basin, and plants need to make an additional adaptive effort. The objective of this study is to know the response to fire of the main members of the group of serpentine plants, which habit the Spanish Mediterranean ultramafic mountain, to help in their management. For this purpose, monitoring plots were established on a burned ultramafic outcrop, which was affected by fire in August 2012.They were located in the Mediterranean south of the Iberian Peninsula, Andalusia region. The dominant vegetation of this serpentine ecosystem had been studied previously to fire; it was a shrubland composed of endemic serpentinophytes (small shrubs and perennial herbs) included in Digitali laciniatae-Halimietum atriplicifolii plant association (Cisto-Lavanduletea class) in an opened pine forest. The post-fire response of the plants was studied in the stablished burned plots by field works through permanent 200 x 10 m transect methods, consisting on checking whether they were resprouters, seeders, both of them or if they showed no survival response. Additional information about fire related functional traits is provided for the studied taxa from other studies. Of the total of plants studied (23 taxa), 74% acted as resprouters, 30% as seeders, some of which also had the capacity to resprout (13%), and only 9% of the plants did not show any survival strategy. The presence of a resprouting burl was not high (17%), although serpentine small shrubs such as Bupleurum acutifolium and the generalist Teucrium haenseleri had this kind of organ. The herbaceous taxa Sanguisorba verrucosa, Galium boissieranum and Linum carratracense were seen to be resprouters and seeders. The serpentine obligated Ni-accumulator, Alyssum serpyllifolium subsp. malacitanum, did not show any survival strategy in the face of fire and therefore their populations need monitoring after fires. In the studied ecosystems no species had traits that would protect the aerial part of the plant against fire, although most of the species are capable of post-fire generation by below ground buds. Our results show that the ecosystem studied, composed of taxa with a high degree of endemism and some of them threatened, is predominantly adapted to survival after a fire, although their response capacity may be decreased by environmental factors.
The exploitation of timber has had a profound impact on tropical forest areas and their structures. This study assessed the effect of selective logging on natural regeneration and soil characteristics in post-loading bay sites at the Pra-Anum forest reserve in Ghana, West Africa. The results showed no difference in the number of species enumerated in the loading bays and the undisturbed area. More trees were observed in the RAT and RNT plots than in the undisturbed area. Relative to the RAT plot, species on the RNT and the undisturbed area were less diverse and less evenly distributed. Mean tree height, diameter, and basal area were higher in the RAT and RNT plots than in the undisturbed plots. Soil bulk density was lower in the RAT and undisturbed plot than in the RAT plot and increased with increased depth. Soil organic matter was 44% and 27% more in the undisturbed and RAT plots, respectively, than in the RNT plot and accounted for 84.75%, 83.97% and 45.33% of variations in soil bulk density, pH, and CEC. The study provides insight into the need to rehabilitate highly disturbed areas in forests, particularly the addition of topsoil on loading bays, skid trails, roads, and gaps after logging to improve the productivity of the forest soils.
Background: The COVID-19 pandemic has had a substantial economic and psychological impact on workers in Saudi Arabia. The objective of the study was to assess the effects of the COVID-19 epidemic on the financial and mental well-being of Saudi employees in the Kingdom of Saudi Arabia. Purpose: The COVID-19 epidemic has resulted in significant economic and societal ramifications. Current study indicates that the pandemic has not only precipitated an economic crisis but has also given rise to several psychological and emotional crises. This article provides a conceptual examination of how the pandemic impacts the economic and mental health conditions of Saudi workers, based on contemporary Structural Equation Modeling (SEM) models. Method: The current study employed a qualitative methodology and utilized a sample survey strategy. The data was gathered from Saudi workers residing in major cities of Saudi Arabia. The samples were obtained from professionals such as managers, doctors, and engineers, as well as non-professionals like unskilled and low-skilled laborers, who are employed in various public and private sectors. A range of statistical tools, including Descriptive statistics, ANOVA, Pearson’s Correlation, Factor analysis, Reliability test, Chi-square test, and regression approach, were employed to analyze and interpret the results. Result: According to the data, the pandemic has caused a wide range of economic problems, including high unemployment and underemployment rates, income instability, and different degrees of pressure on workers to find work. Feelings of insecurity (about food and environmental safety), worry, dread, stress, anxiety, depression, and other mental health concerns have been generated by these challenges. The rate of mental health decline differs among demographics. Conclusions: The COVID-19 pandemic has universally affected all aspects of our lives worldwide. It resulted in an extended shutdown of educational institutions, factories, offices, and businesses. Without a question, it has profoundly transformed the work environment, professions, and lifestyles of billions of individuals worldwide. There is a high occurrence of poor psychological well-being among Saudi workers. However, it has been demonstrated that both economic health and mental health interventions can effectively alleviate the mental health burden in this population.
In this paper, we will provide an extensive analysis of how Generative Artificial Intelligence (GenAI) could be applied when handling Supply Chain Management (SCM). The paper focuses on how GenAI is more relevant in industries, and for instance, SCM where it is employed in tasks such as predicting when machines are due for a check-up, man-robot collaboration, and responsiveness. The study aims to answer two main questions: (1) What prospects can be identified when the tools of GenAI are applied in SCM? Secondly, it aims to examine the following question: (2) what difficulties may be encountered when implementing GenAI in SCM? This paper assesses studies published in academic databases and applies a structured analytical framework to explore GenAI technology in SCM. It looks at how GenAI is deployed within SCM and the challenges that have been encountered, in addition to the ethics. Moreover, this paper also discusses the problems that AI can pose once used in SCM, for instance, the quality of data used, and the ethical concerns that come with, the use of AI in SCM. A grasp of the specifics of how GenAI operates as well as how to implement it successfully in the supply chain is essential in assessing the performance of this relatively new technology as well as prognosticating the future of generation AI in supply chain planning.
Copyright © by EnPress Publisher. All rights reserved.