This study aims to investigate the relationship between internal and information integration within the supply chain (SCI-INTI and SCI-INFI), supply chain management (SCM) practices, and port operational performance (POP) in Oman’s container ports. Additionally, it explores the mediating role of SCM practices in the relationship between SCI-INTI, SCI-INFI, and POP in Oman. To meet the study’s objectives, a quantitative cross-sectional survey method was used. A total of 377 questionnaires were distributed to managers responsible for supply chain operations in the main departments at Sohar and Salalah ports, yielding 331 usable responses, with a response rate of 88 percent. The data collected were analyzed using partial least squares structural equation modeling (PLS-SEM). The results show that both internal and information integration within the supply chain have positive and statistically significant effects on the operational performance of Oman’s container ports (POP). Specifically, Supply Chain Integration with Internal Integration (SCI-INTI) significantly impacts POP (β = 0.249, t = 5.039, p < 0.001), and Supply Chain Integration with Information Integration (SCI-INFI) also significantly affects POP (β = 0.259, t = 4.966, p < 0.001). Additionally, SCI-INTI positively influences Supply Chain Management Practices (SCMP) (β = 0.381, t = 7.674, p < 0.001), as does SCI-INFI (β = 0.484, t = 9.878, p < 0.001). Furthermore, SCMP positively and significantly influences the operational performance of Oman’s container ports (β = 0.424, t = 7.643, p < 0.001). These findings contribute to the literature by emphasizing the significance of internal and information integration within the supply chain and SCM practices as strategic internal resources and capabilities that enhance operational performance in container ports. Understanding these elements enables decision-makers and policymakers within government port authorities and port operating companies to optimize internal resources and capabilities to improve port operational performance.
Knowledge of the state of fragmentation and transformation of a forested landscape is crucial for proper planning and biodiversity conservation. Chile is one of the world’s biodiversity hotspots; within it is the Nahuelbuta mountain range, which is considered an area of high biodiversity value and intense anthropic pressure. Despite this, there is no precise information on the degree of transformation of its landscape and its conservation status. The objective of this work was to evaluate the state of the landscape and the spatio-temporal changes of the native forests in this mountain range. Using Landsat images from 1986 and 2011, thematic maps of land use were generated. A 33% loss of native forest in 25 years was observed, mainly associated to the substitution by forest plantations. Changes in the spatial patterns of land cover and land use reveal a profound transformation of the landscape and advanced fragmentation of forests. We discuss how these patterns of change threaten the persistence of several endemic species at high risk of extinction. If these anthropogenic processes continue, these species could face an increased risk of extinction.
Developing Asia’s infrastructure gap results from both inadequate public resources and a lack of effective channels to mobilize private resources toward desired outcomes. The public-private partnership (PPP) mechanism has evolved to fill the infrastructure gap. However, PPP projects are often at risk of becoming distressed, or worst, being terminated because of the long-term nature of contracts and the many different stakeholders involved. This paper applies survival-time hazard analysis to estimate how project-related, macroeconomic, and institutional factors affect the hazard rate of the projects. Empirical results show that government’s provision of guarantees, involvement of multilateral development banks, and existence of a dedicated PPP unit are important for a project’s success. Privately initiated proposals should be regulated and undergo competitive bidding to reduce the hazard rate of the project and the corresponding burden to the government. Economic growth leads to successful project outcomes. Improved legal and institutional environment can ensure PPP success.
In this study, the effect of roasting and boiling on the yield and oxidative stability of soya bean oil was investigated. The oil was soxhlet extracted and the oxidative stability was determined by the free fatty acid value, acid value and peroxide value. The results showed that the oil yield, free fatty acid value, acid value and peroxide value were significantly affected by roasting, boiling, and the thermal treatment time. The percentage oil yield in the control oil sample was 18.51%, which increased to 20.24% and 20.73% after boiling and roasting respectively, at 40mins. The corresponding free fatty acid and the peroxide value of the control oil sample were 0.14% and 2.04 meqO2/kg, which increased to 0.82% and 6.60 meqO2/kg by roasting, and 0.47% and 5.62 meqO2/kg by boiling respectively. Thus the oil yield, free fatty acid value, peroxide value, and acid value increased with increasing roasting and boiling time.
The results indicate that roasting provides a higher oil yield than boiling, but boiled oil has higher oxidative stability than roasted oil.
Traditional building heating warms entire rooms, often leaving some dissatisfied with uneven warmth. Recently, the personalized heating system has addressed this by providing targeted warmth, enhancing comfort and satisfaction. The personalized heating system in this study is a new enclosed personalized heating system consisting of a semi-enclosed heating box and an insulated chair covered with a thick blanket. The study compares the heating effects of semi-enclosed and enclosed localized heating systems on the body and examined changes in subjects’ thermal sensations. Due to the lower heat loss of the enclosed personalized heating system compared to the semi-enclosed version, it created thermal micro-environments with higher ambient temperatures. The maximum air temperature increase within the enclosed system was twice that of the semi-enclosed system, with the heating film surface temperature rising by up to 6.87 ℃. Additionally, the temperature of the skin could increase by as much as 6.19 ℃, allowing individuals to maintain thermal neutrality even when the room temperature dropped as low as 8 ℃. A two-factor repeated measures analysis of variance revealed differences in temperature sensitivity across various body regions, with the thighs showing a notably higher response under high-power heating conditions. The corrective energy and power requirements of the enclosed personalized heating system also made it more energy-efficient than other personalized heating systems, with a minimum value reaching 6.07 W/K.
Every production day in Nigeria, and in other oil producing countries, millions of barrels of produced water is generated. Being very toxic, remediation of the produced water before discharge into environment or re-use is very essential. An eco-friendly and cost effective approach is hereby reported for remediative pre-treatment of produced water (PW) obtained from Nigerian oilfield. In this approach, Telfairia occidentalis stem extract-silver nanoparticles (TOSE-AgNPs) were synthesized, characterized and applied as bio-based adsorbent for treating the PW in situ. The nanoparticles were of average size 42.8 nm ± 5.3 nm, spherical to round shaped and mainly composed of nitrogen and oxygen as major atoms on the surface. Owing to the effect of addition of TOSE-AgNPs, the initially high levels (mg/L) of Total Dissolved Solids (TDS), Biological Oxygen Demand (BOD) and TSS of 607, 3.78 and 48.4 in the PW were reduced to 381, 1.22 and 19.6, respectively, whereas DO and COD improved from 161 and 48.4 to 276 and 19.6 respectively, most of which fell within WHO and US-EPA safe limits. Particularly, the added TOSE-AgNPs efficiently removed Pb (II) ions from the PW at temperatures between 25 ℃ to 50 ℃. Removal of TOSE-AgNPs occurred through the adsorption mechanism and was dependent contact time, temperature and dose of TOSE-AgNPs added. Optimal remediation was achieved with 0.5 g/L TOSE-AgNPs at 30 ℃ after 5 h contact time. Adsorption of Pb (Ⅱ) ions on TOSE-AgNPs was spontaneous and physical in nature with remediation efficiency of over 82% of the Pb (Ⅱ) ions in solution. Instead of discarding the stem of Telfairia occidentalis, it can be extracted and prepared into a new material and applied in the oilfield as reported here for the first time.
Copyright © by EnPress Publisher. All rights reserved.