This study investigates the viability and sustainability of proposed landfill sites based on the uncapacitated facility location problem framework utilising the SmartPLS4 Structural Equation Modelling. Investigating the Cape Coast Metropolis, a stratified sampling method selected 400 samples out of which 320 valid respondents were used as the basis for the analysis. Through statistical analysis, significant correlations were identified among community acceptance, environmental impact, facility accessibility, site sustainability, and operational efficiency. However, no significant correlation was found between economic viability and site sustainability. Furthermore, the proposed indirect mediation pathway from operational efficiency to site sustainability via facility accessibility was also statistically insignificant. Employing the use of SmartPLS4 approach in studying the application of uncapacitated facility location problem framework, deepens the understanding of landfill viability and sustainability dynamics. This research contributes to the environmental sciences and sustainability by providing insights into landfill management strategies and emphasising the importance of community engagement and environmental performance in achieving sustainable outcomes. Future research could refine the model by including additional variables like technological advancements and regulatory frameworks, conducting longitudinal studies to track landfill dynamics over time, and undertaking comparative studies across different geographical regions. This could provide insights into management approaches’ applicability. Interdisciplinary collaborations are recommended to address the multifaceted challenges of landfill sustainability.
Global CO2 emissions pose a serious threat of climate change for high-growth countries, requiring increased efforts to preserve the environment and meet growing economic needs through the use of renewable energies. This research significantly enhances the current literature by filling a void and differentiating between short-term and long-term impacts across economic growth, renewable energy consumption, energy intensity, and CO2 emissions in BRIC countries from 2002 to 2019. In contrast to approaches that analyze global effects, this study’s focus on short and long-term effects offers a more dependable insight into energy and environmental research. The empirical results confirmed that the effect of economic growth on CO2 emissions is positive both in the short and long term. Moreover, the effect of energy consumption is negative in the short term and positive in the long term. The effect of energy intensity is positive in the short term and negative in the long term. Accordingly, policy recommendations must be adopted to ensure that these economies respond to the notion of sustainable development and the relationship with the environment. BRIC countries must strengthen their industries in the long term in favor of the use of renewable energies by introducing innovation and technology. These economies face the challenge of a transition to renewable energy sources by creating a new energy and industrial sector environment that is more environmentally friendly atmosphere.
Mathematics education is a comprehensive scientific system that holds significant importance in studying the seamless integration between university mathematics education and secondary mathematics education. This research paper delves into the challenges encountered during the transition from high school to university mathematics and offers analytical strategies and recommendations for both teachers and students. The objective is to enhance the continuity and coherence of mathematics education. Furthermore, tailored recommendations are provided to bridge the gap between high school and university mathematics education, taking into consideration the unique characteristics of students from different provinces and cities.
The increase in world carbon emissions is always in line with national economic growth programs, which create negative environmental externalities. To understand the effectiveness of related factors in mitigating CO2 emissions, this study investigates the intricate relationship among macro-pillars such as economic growth, foreign investment, trade and finance, energy, and renewable energy with CO2 emissions of the high gross domestic product economies in East Asia Pacific, such as China, Japan, Korea, Australia and Indonesia (EAP-5). Through the application of the Vector Error Correction Model (VECM), this research reveals the long-term equilibrium and short-term dynamics between CO2 emissions and selected factors from 1991 to 2020. The long-term cointegration vector test results show that economic growth and foreign investment contribute to carbon reduction. Meanwhile, the short-term Granger causality test shows that economic growth has a two-way causality towards carbon emissions, while energy consumption and renewable energy consumption have a one-way causality towards carbon emissions. In contrast, the variables trade, foreign direct investment, and domestic credit to the private sector do not have two-way causality towards CO2 emissions. The findings reveal that economic growth and foreign investment play significant roles in carbon reduction, which are observed in long-term causality relationships, while energy consumption and renewable energy are notable factors. Thus, the study offers implications for mitigating environmental concerns on national economic growth agendas by scrutinizing and examining the efficacy of related factors.
Copyright © by EnPress Publisher. All rights reserved.