Background: Digital transformation in the sports industry has become increasingly crucial for sustainable development, yet comprehensive empirical evidence on policy effectiveness and risk management remains limited. Purpose: This study investigates the impact of policy support and risk factors on digital transformation in sports companies, examining heterogeneous effects across different firm characteristics and regional contexts. Methods: Using panel data from 168 sports companies listed on China’s A-shares markets and the New Third Board from 2019 to 2023, this study employs multiple regression analyses, including baseline models, instrumental variables estimation, and robustness tests. The digital transformation level is measured through a composite index incorporating digital infrastructure, capability, and innovation dimensions. Results: The findings reveal that policy support significantly enhances digital transformation levels (coefficient = 0.238, p < 0.01), while financial risks demonstrate the strongest negative impact (−0.162, p < 0.01). Large firms and state-owned enterprises show stronger responses to policy support (0.312 and 0.278, respectively, p < 0.01). Regional development levels significantly moderate the effectiveness of policy implementation. Conclusions: The study provides empirical evidence for the differential effects of policy support and risk factors on digital transformation across various firm characteristics. The findings suggest the need for differentiated policy approaches considering firm size, ownership structure, and regional development levels. Implications: Policy makers should develop targeted support mechanisms addressing specific challenges faced by different types of firms, while considering regional disparities in digital transformation capabilities.
The performance of Public Enterprises (PEs) in Namibia has been a long and contentious issue, clamored by continuous bailouts in the face of constant poor performance. The trend of financial bailouts to PEs in Namibia over the years has attracted increased attention into the dynamics of poor PE performance and their fiscal burden on the state. The Namibian government has taken active steps in cutting on PE bailouts and demanding improved performance or face closure. By looking at recent developments in the governance of PEs in Namibia, the purpose and objective of the current study is to analyze whether the current stance and trajectory of government decisions spells a post-honeymoon period in which poor performing PEs will ‘wither and survive or die’ if they do not improve their sustainability index by not relying on financial bailouts. This analysis is aided by the insights provided by the stakeholder, institutional and principal-agent theories. Through the qualitative research method, this study finds that the Namibian government has taken a new attitude and approach in which it will no longer blindly accept and tolerate the poor performance of PEs through continuous bailouts as seen in the past. PEs that are withering will now either survive (through reforms) or die (through liquidation or dissolution).
Introduction: The digital era has ushered in transformative changes across industries, with the real estate sector being a pivotal focus. In Guangdong Province, China, real estate enterprises are at the forefront of this digital revolution, navigating the complexities of technological integration and market adaptation. This study delves into the intricacies of digital transformation and its profound implications for the financial performance of these enterprises. The rapid evolution of digital technologies necessitates examining how such advancements redefine operational strategies and financial outcomes within the real estate landscape. The inclusion of government support as a variable in our study is deliberate and stems from its profound influence on shaping the digital landscape. Government policies and initiatives provide a regulatory framework and offer strategic direction and financial incentives that catalyze digital adoption and integration within the real estate sector. By examining the moderating effect of government support, this study aims to uncover the nuanced interplay between policy-driven environments and the financial performance of enterprises undergoing digital transformation. This exploration is essential to understanding the broader implications of public policy on private-sector innovation and growth. Objectives: The primary objective of this research is to evaluate the impact of digital transformation on the financial performance of Guangdong’s real estate enterprises, with a specific focus on return on equity (ROE) and return on assets (ROA). Additionally, this study aims to scrutinize the role of government support as a potential moderator in the relationship between digital transformation and financial success. The research seeks to provide actionable insights for policymakers and industry players by understanding these dynamics. The digital transformation of Guangdong’s real estate sector presents a complex landscape of challenges and opportunities that shape the industry’s evolution. On one hand, the integration of innovative digital technologies into established operational frameworks poses significant challenges. These include the need for substantial investment in new infrastructure, the imperative for a cultural shift towards digital literacy across the workforce, and the continuous demand for upskilling to remain agile in an increasingly digital market. On the other hand, digital transformation affords manifold opportunities. For instance, enhanced operational efficiencies through automation and data analytics offer substantial benefits in terms of cost savings and process optimization. Furthermore, leveraging data-driven insights enables more informed strategic decision-making, which is critical in a competitive real estate market. The capacity to innovate service offerings by tapping into digital platforms and customer relationship management systems also presents a significant opportunity for real estate enterprises to differentiate themselves and capture new market segments. Methods: This study explores the digital transformation of real estate firms in Guangdong, highlighting government support as a critical moderator. Findings show that digital initiatives improve company performance, with government backing amplifying these benefits. Regional disparities in support suggest a need for tailored strategies, indicating the importance of policy in driving digital adoption and innovation in the sector. The study advises firms to leverage local policies and policymakers to address regional imbalances for equitable digital transformation. This study uses a sample of 28 real estate enterprises in Guangdong Province from 2012 to 2022. Panel data analysis with a fixed effects model tests the hypotheses. The study also conducts robustness checks by replacing the key variables. Results: The findings indicate that digital transfo
The research utilizes a comprehensive dataset from MENA-listed companies, capturing data from 2013 to 2022 to scrutinize the influence of capital structure (CapSt) level on corporate performance across 11 distinct countries. This study analyzed 6870 firm-year observations using a quantitative research method through static and dynamic panel data analysis. The primary analysis reveals a positive correlation between the CapSt ratio and company performance using fixed effects (FE) techniques. Hence, the preliminary results were re-examined and affirmed using a two-step system generalized method of moment (GMM) estimator to address potential endogeneity concerns. This finding aligns with most studies conducted in advanced countries, indicating a positive correlation between CapSt and corporate performance. Furthermore, it is also consistent with some research conducted in less-developed markets. This research argues that, in the MENA region, the advantages of debt, such as tax saving, may outweigh the potential financial distress cost. Furthermore, it offers insights into the monitoring role of CapSt in MENA-listed companies. We strengthen our research results by employing various methodologies and using alternative measures of accounting performance and controlling size, notably panel quantile regression analysis.
This study examines the impact of Human Resource Management (HRM) practices, specifically Compensation, Job Design, and Training, on employee outcomes, including Engagement, Efficiency, Customer Satisfaction, and Innovation within an organizational framework. Employing a quantitative research methodology, the study utilizes a cross-sectional survey design to collect data from employees within a public service organization, analyzing the relationships through structural equation modelling. Findings reveal significant positive relationships between HRM practices and employee performance metrics, highlighting the pivotal role of Employee Engagement as a mediator in enhancing organizational effectiveness. Specifically, Compensation and Job Design significantly influence Employee Engagement and Efficiency, while training is crucial for driving Innovation and Customer Satisfaction. The practical implications of this research underscore the necessity for organizations to adopt integrated and strategic HRM frameworks that foster employee engagement to drive performance outcomes. These insights are vital for HR practitioners and organizational leaders aiming to enhance workforce productivity and innovation. In conclusion, the study contributes valuable perspectives to the HRM literature, advocating for holistic HRM practices that optimize employee well-being and ensure organizational competitiveness. Future research is encouraged to explore these dynamics across various sectors and cultural contexts to validate the generalizability of the findings.
Amidst an upsurge in the quantity of delinquent loans, the financial industry is experiencing a fundamental transformation in the approaches utilised for debt recovery. The debt collection process is presently undergoing automation and improvement through the utilisation of Artificial Intelligence (AI), an emergent technology that holds the potential to revolutionise this sector. By leveraging machine learning, natural language processing, and predictive analytics, automated debt recovery systems analyse vast quantities of data, generate forecasts regarding the likelihood of recovery, and streamline operational processes. Debt collection systems powered by AI are anticipated to be compliant, precise, and effective. On the other hand, conventional approaches are linked to increasing expenditures and inefficiencies in operations. These solutions facilitate efficient resource allocation, customised communication, and rapid data analysis, all while minimising the need for human intervention. Significant progress has been made in data analytics, predictive modelling, and decision-making through the application of artificial intelligence (AI) in debt recovery; this has the potential to revolutionize the financial sector’s approach to debt management. The findings of the research underscore the criticality of artificial intelligence (AI) in attaining efficacy and precision, in addition to the imperative of a data-centric framework to fundamentally reshape approaches to debt collection. In conclusion, artificial intelligence possesses the capacity to profoundly transform the existing approaches utilized in debt management, thereby guaranteeing financial institutions’ sustained profitability and efficacy. The application of machine learning methodologies, including predictive modelling and logistic regression, signifies the potential of the system.
Copyright © by EnPress Publisher. All rights reserved.