In this study, optical and microwave satellite observations are integrated to estimate soil moisture at the same spatial resolution as the optical sensors (5km here) and applied for drought analysis in the continental United States. A new refined model is proposed to include auxiliary data like soil texture, topography, surface types, accumulated precipitation, in addition to Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) used in the traditional universal triangle method. It is found the new proposed soil moisture model using accumulated precipitation demonstrated close agreements with the U.S. Drought Monitor (USDM) spatial patterns. Currently, the USDM is providing a weekly map. Recently, “flash” drought concept appears. To obtain drought map on daily basis, LST is derived from microwave observations and downscaled to the same resolution as the thermal infrared LST product and used to fill the gaps due to clouds in optical LST data. With the integrated daily LST available under nearly all weather conditions, daily soil moisture can be estimated at relatively higher spatial resolution than those traditionally derived from passive microwave sensors, thus drought maps based on soil moisture anomalies can be obtained on daily basis and made the flash drought analysis and monitoring become possible.
In many cases, the expected efficiency advantages of public-private partnership (PPP) projects as a specific form of infrastructure provision did not materialize ex post. From a Public Choice perspective, one simple explanation for many of the problems surrounded by the governance of PPPs is that the public decision-makers being involved in the process of initiating and implementing PPP projects (namely, politicians and public bureaucrats) in many situations make low- cost decisions in the sense of Kirchgässner (1948–2017). That is, their decisions may have a high impact on the wealth of the jurisdiction in which the PPP is located (most notably, on the welfare of citizen-taxpayers in this jurisdiction) but, at the same time, these decisions often only have a low impact on the private welfare of the individual decision-makers in politics and bureaucracy. The latter, for example, in many settings often have a low economic incentive to monitor/control what the private-sector partners are doing (or not doing) within a PPP arrangement. The purpose of this paper is to draw greater attention to the problems created by low-cost decisions for the governance of PPPs. Moreover, the paper discusses potential remedies arising from the viewpoint of Public Choice and Constitutional Political Economy.
In this study, the effect of porogenic solvents on pore size distribution of the polycaprolactone (PCL) thin films was investigated. Five thin PCL films were prepared using the solvent-casting method. Chloroform, Methylene Chloride (MC) and three different compositions of MC/ Dimethylformamide (DMF) (80/20, 50/50 and 20/80) were used as solvents. Scanning Electron Microscopy (SEM) investigations were employed to study morphology and consequently the pore size distribution of the prepared films. The PCL films made by chloroform and MC as a solvent were completely non-porous. Whereas the other films (made by a combination of MC and DMF) showed both uni-modal and bi-modal pore size distributions.
Providing and using energy efficiently is hampered by concerns about the environment and the unpredictability of fossil fuel prices and quantities. To address these issues, energy planning is a crucial tool. The aim of the study was to prioritize renewable energy options for use in Mae Sariang’s microgrid using an analytical hierarchy process (AHP) to produce electricity. A prioritization exercise involved the use of questionnaire surveys to involve five expert groups with varying backgrounds in Thailand’s renewable energy sector. We looked at five primary criteria. The following four combinations were suggested: (1) Grid + Battery Energy Storage System (BESS); (2) Grid + BESS + Solar Photovoltaic (PV); (3) Grid + Diesel Generator (DG) + PV; and (4) Grid + DG + Hydro + PV. To meet demand for electricity, each option has the capacity to produce at least 6 MW of power. The findings indicated that production (24.7%) is the most significant criterion, closely followed by economics (24.2%), technology (18.5%), social and environmental (18.1%), and structure (14.5%). Option II is strongly advised in terms of economic and structural criteria, while option I has a considerable advantage in terms of production criteria and the impact on society and the environment. The preferences of options I, IV, and III were ranked, with option II being the most preferred choice out of the four.
The aim of the present study was to determine the effects of single and mixed infections of nematode (Meloidogyne javanica), fungus (Fusarium oxysporum) and bacterium (Xanthomonas axonopodis) on nodulation and pathological parameters of Bambara groundnut (Vigna subterrenea (L.) Verdc.) in field condition. Nematode infested field was used while other pathogens were obtained from diseased plants. The Randomized Complete Block Design (RCBD) was adopted in a 5 × 9 × 5 factorial design (5 blocks, 9 treatments and 5 replicates per treatments) resulting in 225 experimental units. In each experimental unit, three seeds were sown to a depth of 5cm and thinned to one plant per planting hole after germination at day 7. Treatments were inoculated into test plant following standard methods. As a result, the control treatment recorded the highest number of nodules (64.0 ± 6.91), followed by bacterium (45.2 ± 5.11) while N + F + B had the lowest number of root nodules (23.4 ± 2.42). Simultaneous treatment (N + F + B) gave the highest percentage reduction in nodulation (63.44%), followed by treatment N + F7 (56.25%). Fungus treatment recorded the highest mean wilted plants (3.8 + 0.20) followed by N + F7 treatment (3.40 + 0.40). Gall formation in the nematode treatment increased proportionately by 56.33% as the highest recorded, followed by treatment N + F7 with 50.0%. Treatment N + F7 had the highest reproduction factor (Rf) value of 9.30 followed by nematode (8.30), N + B7 (7.40), N + F + B (6.80) and N + F14 (6.50). Zero (0) Rf value was recorded in fungus, bacterium and control treatments. The observed differences in nodulation and pathological parameters among the treatments are significant (P < 0.05). The data provided in this work is important in the control of the three pathogens affecting the productivity of Bambara nut. Formulation of a single protectant should be designed to have potent effects on the three pathogens to achieve effective protection and good production of Bambara nut.
Taking the geographic information industry as the research object, using the authorized invention patent data, this paper puts forward the research method of industrial innovation chain structure based on the geographic information industry chain. Then, from the perspective of overall structure and specific regional structure, the development status of the innovation chain is quantitatively evaluated, which is helpful to all countries in the world. The structural integrity and leading links of the innovation chain especially in China, the United States and Japan are compared and analyzed. The results show that: (1) from the perspective of the overall structure, the global innovation chain presents an “inverted triangle” structure due to the weak innovation ability of downstream links. From the perspective of specific regional structure, the innovation chain of geographic information industry in most countries and regions is incomplete, and there are broken links or isolated links. The global innovation chain except China has cracks between the upstream and downstream due to the relative weakness of the midstream links, showing “hourglass-shaped” structure with a wide upper part, narrow lower part and narrow middle part. (2) Relatively speaking, China’s industrial innovation chain is relatively complete, and the midstream link has significant comparative advantages in the global market. However, the industry university research cooperation in the innovation chain is weak, the degree of marketization is low, and the technological competitiveness lags behind that of the United States.
Copyright © by EnPress Publisher. All rights reserved.