Lake Batur is one of the national priorities, as it has economic value, and fish resources are used for food security and improving the local people’s welfare. The study examined the applicability of fisheries management status based on the ecosystem approach in lakes. The study was carried out from February to July 2023 using ecosystem approach methods in seven villages around Batur Lake, Bali, Indonesia, Data was collected through observations and interviews with 189 respondents. The success of fisheries management might be shown as a flag model after the composite domain and the total aggregate value of all dominants were rated. The results showed that the managed fish resources and stakeholders were unsatisfactory categories. Generally, social and fishing technology domains were classified as good categories. For that, ecosystem approach applications for sustainable fisheries in Batur Lake needed action under the five common scenario goals (a) reducing non-target fish (red devil) in the lakes by intensive capture and processing into other products of economic value; (b) regulations related to the reserve area as a place for fish to spawn and breed; (c) increasing the synergy of fisheries management policies; (d) increasing the stakeholder capacity; and (e) government support and related stakeholders regarding one regulation for fisheries management.
This study investigated the changing land use patterns and their impacts on ecosystem in the Teesta River Basin of northwestern Bangladesh. Although anthropocentric land use patterns, including agricultural land use, settlements, built areas, and waterbody loss, have been increasing in the Nilphamari district, by negatively affecting local ecosystems, they have not been identified by prior research. Limitations of contemporary literature motivated me to work on this crucial ground in the Teesta River Basin in Northwestern Bangladesh. This study applied a mixed research approach to identify the study objectives. Firstly, the land use and land cover (LULC) changes which occurred between 2000 and 2020 were detected using satellite imagery and supervised classification method. In addition to the detection of LULC changes, the study explored the people’s perceptions and experiences about the ecosystem changes resulted from the LULC changes over the last 20 years, conducting stakeholders’ consultations and household surveys utilizing a semi-structured questionnaire. The findings indicated that waterbodies in Nilphamari district have significantly decreased from 378 km2 in 2000 to 181 km2 in 2020. In the same way, the vegetation coverage has reduced 187 km2 between the years 2000 and 2020. On the contrary, agricultural lands (croplands) have increased from 595 km2 to 905 km2 and settlements have increased from 81 km2 to 206 km2 between the years 2000 and 2020. From the chi-square test, it was found a significant association between ecosystem change and biodiversity loss. It was further identified that waterbody decreases have significant impacts on aquatic ecosystems. The results of this study also indicated that due to the introduction of foreign tree species, local and native species have been significantly decreasing over the time. This study emphasizes the non-anthropocentric and inclusive land use policy implications for protecting life on land and preserving the aquatic ecosystem in Bangladesh.
Tropical peat swamp is an essential ecosystem experiencing increased degradation over the past few decades. Therefore, this study used the social-ecological system (SES) perspective to explain the complex relationship between humans and nature in the Sumatran Peatlands Biosphere Reserve. The peat swamp forest has experienced a significant decline, followed by a significant increase in oil palm and forest plantations in areas designated for peat protection. Human systems have evolved to become complex and hierarchical, constituting individuals, groups, organizations, and institutions. Studies on SES conducted in the tropical peatlands of Asia have yet to address the co-evolutionary processes occurring in this region, which could illustrate the dynamic relationship between humans and nature. This study highlights the co-evolutionary processes occurring in the tropical peatland biosphere reserve and provides insights into their sustainability trajectory. Moreover, the coevolution process shows that biosphere reserve is shifting toward an unsustainable path. This is indicated by ongoing degradation in three zones and a lack of a comprehensive framework for landscape-scale water management. Implementing landscape-scale water management is essential to sustain the capacity of peatlands social-ecological systems facing disturbances, and it is important to maintain biodiversity. In addition, exploring alternative development pathways can help alter these trajectories toward sustainability.
The coastal area of Bohai Bay of China has a wide distribution of salt-accumulated soils which could pose a problem to the sustainable development of the local ecology. As a result, the land remains largely degraded and unsuitable for biophysical and agricultural purposes. In this study, we characterized the soil and native plants in the area, to properly understand and identify species with satisfactory adaptation to saline soil and of high economic or ecological value that could be further developed or domesticated, using appropriate cultivation techniques. The goal was to determine the salinity parameters of the soil, identify the inhabiting plant species and contribute to the ecosystem data base for the Bay area. A field survey involving soil and plant sampling and analyses was conducted in Yanshan and Haixing Counties of Hebei Province, China, to estimate the level of salt ions as well as plant species population and type. The mean electrical conductivity (EC) of the soils ranged from 0.47 in more remote locations to 23.8 ds/m in locations closer to the coastline and the total salt ions from 0.05 to 8.8 g/kg, respectively. Each of the salinity parameters, except HCO3− showed wide variations as judged from the coefficient of variation (CV) values. The EC, as well as chloride, sulphate, Mg and Na ions increased significantly towards the coastline but the HCO3− ion showed a relatively even distribution across sampling points. Sodium was the most abundant cation and chloride and sulphate the most abundant anions. Therefore, the most dominant salinity-inducing salt that should be properly managed for sustainable ecosystem health was sodium chloride. Based on the EC readings, the most remote location from the coastline was non-saline but otherwise, the salinity ranged from slightly to strongly-very strongly saline towards the coast. There were considerably wide variations in the number and distribution of plant species across sampling locations, but most were dominated entirely Phragmites australis, Setaria viridis and Sueda salsa. Other species identified were Aeluropus littoralis, Chloris virgata, Heteropappus altaicus, Imperata cylindrica, Puccinellia distans, Puccinellia tenuiflora and Scorzonera austriaca. On average, the sampling points furthest from the coast produced the most biomass, and the point with the highest elevation had the most diverse species composition. Among species, Digitaria sanguinalis produced the highest dry mass, followed by Lolium perenne and H. altaicus, but there were considerable variations in biomass yield across sampling locations, with the location nearest the coastline having no vegetation. The observed variations in soil and vegetation should be strongly considered by planners to allow for the sustainable development of the Bahai bay area.
The rapid advancement of artificial intelligence (AI) technology is profoundly transforming the information ecosystem, reshaping the ways in which information is produced, distributed, and consumed. This study explores the impact of AI on the information environment, examining the challenges and opportunities for sustainable development in the age of AI. The research is motivated by the need to address the growing concerns about the reliability and sustainability of the information ecosystem in the face of AI-driven changes. Through a comprehensive analysis of the current AI landscape, including a review of existing literature and case studies, the study diagnoses the social implications of AI-driven changes in information ecosystems. The findings reveal a complex interplay between technological innovation and social responsibility, highlighting the need for collaborative governance strategies to navigate the tensions between the benefits and risks of AI. The study contributes to the growing discourse on AI governance by proposing a multi-stakeholder framework that emphasizes the importance of inclusive participation, transparency, and accountability in shaping the future of information. The research offers actionable insights for policymakers, industry leaders, and civil society organizations seeking to foster a trustworthy and inclusive information environment in the era of AI, while harnessing the potential of AI-driven innovations for sustainable development.
The affectations caused by extreme events of natural origin such as droughts and floods in traditional homes in the province of Gran Chaco, in Bolivia, are frequent. These aspects compromise the habitat of the populations that occupy them, as is the case of the original Weenhayek people, as an alternative for the improvement of the human habitat of this town. Through theoretical and empirical methods, five variables used for the development of the adaptation model were determined, from the bases of planned adaptation as a component of urban-territorial resilience, in search of an improvement of socio-environmental systems in the face of the effects of climate change, exemplified in the Weenhayek native people. The model establishes the improvements of traditional dwellings, from a current trend of deterioration to one of preservation, conservation and growth in the Weenhayek culture, through various features, such as: Respects the cultural design of the house that integrates local patterns of the environment, ecosystem and contemporary construction elements without affecting its image, the materials and construction techniques used are of a traditional nature, but with contemporary elements that improve their application, durability, stability, as an articulated construction system, commits governments in all instances to the technical-constructive study of the rural areas of the human settlements of the Weenhayek people, and establishes a starting point towards new studies focused on native peoples.
Copyright © by EnPress Publisher. All rights reserved.