The usage of cybersecurity is growing steadily because it is beneficial to us. When people use cybersecurity, they can easily protect their valuable data. Today, everyone is connected through the internet. It’s much easier for a thief to connect important data through cyber-attacks. Everyone needs cybersecurity to protect their precious personal data and sustainable infrastructure development in data science. However, systems protecting our data using the existing cybersecurity systems is difficult. There are different types of cybersecurity threats. It can be phishing, malware, ransomware, and so on. To prevent these attacks, people need advanced cybersecurity systems. Many software helps to prevent cyber-attacks. However, these are not able to early detect suspicious internet threat exchanges. This research used machine learning models in cybersecurity to enhance threat detection. Reducing cyberattacks internet and enhancing data protection; this system makes it possible to browse anywhere through the internet securely. The Kaggle dataset was collected to build technology to detect untrustworthy online threat exchanges early. To obtain better results and accuracy, a few pre-processing approaches were applied. Feature engineering is applied to the dataset to improve the quality of data. Ultimately, the random forest, gradient boosting, XGBoost, and Light GBM were used to achieve our goal. Random forest obtained 96% accuracy, which is the best and helpful to get a good outcome for the social development in the cybersecurity system.
This study aims to explain the design of policy strengthening in forest and land fire disaster mitigation governance, through the integration of ecotourism development in Siak Regency. Based on the research topic, this study employs a qualitative approach to describe governance conditions and the design of policy strengthening in ecotourism-based disaster mitigation governance. Data analysis is performed using Nvivo 12 Plus software. The results of this study indicate that forest and land fire disaster mitigation governance based on ecotourism development still has shortcomings that need to be addressed in the principles of conservation, economy, and community involvement. Then, the design of a policy to strengthen ecotourism-based disaster mitigation governance includes three crucial policy recommendations, namely: the need for special regulations related to forest and land fire disaster mitigation prevention based on the integration of ecotourism principle development, the need for a balance of roles between actors in determining and implementing ecotourism-based disaster mitigation policies, and the need for effective and efficient implementation of ecotourism-based disaster mitigation policies through increasing the involvement of strategic actors. Substantially, the handling of forest and land fire disasters in Siak Regency can be combined with ecotourism activities, especially in tourist village areas, by developing policies to strengthen the utilization of village-owned disaster mitigation facilities such as reservoirs, lakes, or ponds that are converted into water supplies during the dry season for forest and land fire disaster prevention activities and local economy-based tourist destinations. Our findings are a strategic effort to raise awareness among actors and highlight the need for policy-strengthening design in ecotourism-based disaster mitigation. These findings can also contribute to the literature that will be useful for all stakeholders in developing future long-term disaster mitigation governance policies. This study relies heavily on information from key informants, who represent only the perspectives and expertise of the stakeholders encountered. However, it still refers to important elements based on the informants’ knowledge capabilities in the disaster and tourism sectors. Therefore, we propose to conduct future studies on a comprehensive analysis of sustainable ecotourism-based disaster mitigation governance to promote and accelerate the idea of disaster and tourism in the future.
Bamboo is one of the noble plant species in Ethiopia. Household (HH) income and construction role of highland bamboo (Oldeania alpina (K. Schum.) Stapleto) stands were assessed at Masha district, Southern Ethiopia. Three peasant associations (PAs), Yepo, Yina and Gada, 7–15 key informants and 68, 46, 31 households, respectively were interviewed about the cost and income of bamboo to compare with woody climbers, honey, and mushroom in 2021. Bamboo was one of the main sources of income in all PAs, at least for fencing or house construction. In Yepo, Yina and Gada bamboo accounts 0.7%, 28.1%, 16.3% of the HH NTFP income, respectively. The local people responded that bamboo constructed houses and fences were durable for 15–30 and 2–10 years, respectively. In constructing a 2.44–4.27 m radius local house in Yepo, Yina and Gada 2.4–6 m3, 4.1–5.82 m3 and 3.1–4.3 m3 bamboo culms were harvested at 15, 20, and 30 years interval, respectively by each HH. Bamboo young shoots were also seasonally used for food. Although bamboo provides multiple uses, like substitute for wood and environmental services, it was facing different problems of deforestation. Therefore, policy attention is highly important for bamboo sustainable utilization.
Himalayan ‘Ecotone’ temperate conifer forest is the cradle of life for human survival and wildlife existence. Human intervention and climate change are rapidly degrading and declining this transitional zone. This study aimed to quantify the floristic structure, important value index (IVI), topographic and edaphic variables between 2019 and 2020 utilizing circular quadrant method (10m × 10m). The upper-storey layer consisted of 17 tree species from 12 families and 9 orders. Middle-storey shrubs comprise 23 species representing 14 families and 12 orders. A total of 43 species of herbs, grasses, and ferns were identified from the ground-storey layer, representing 25 families and 21 orders. Upper-storey vegetation structure was dominated by Pinus roxburghii (22.45%), while middle-storey vegetation structure was dominated by Dodonaea viscosa (7.69%). However, the ground layer vegetation was diverse in species composition and distribution. By using Ward’s agglomerative clustering technique, the floral vegetation structure was divided into three floral communities. Ailanthus altissima, Pinus wallichiana, and P. roxburghii had the highest IVI values in Piro–Aial (Group 2), Piwa–Quin (Group 3) and Aial–Qugal (Group 2). The IVI values for Aesculus indica, Celtis australis, and Quercus incana in Aial-Qugal (Group 2) were not determined. Nevertheless, eleven of these species had 0 IVI values in Piro–Aial (Group 2) and Piwa–Quin (Group 3). Based on the CCA ordination biplot, significant differences were observed in floral characteristics and distribution depending on temperature, rainfall, soil pH, altitude, and topographic features. Based on Ward’s agglomerative clustering, it was found that Himalayan ‘Ecotone’ temperate conifer forests exhibit a rich and diverse floristic structure.
In this paper, we assess the results of experiment with different machine learning algorithms for the data classification on the basis of accuracy, precision, recall and F1-Score metrics. We collected metrics like Accuracy, F1-Score, Precision, and Recall: From the Neural Network model, it produced the highest Accuracy of 0.129526 also highest F1-Score of 0.118785, showing that it has the correct balance of precision and recall ratio that can pick up important patterns from the dataset. Random Forest was not much behind with an accuracy of 0.128119 and highest precision score of 0.118553 knit a great ability for handling relations in large dataset but with slightly lower recall in comparison with Neural Network. This ranked the Decision Tree model at number three with a 0.111792, Accuracy Score while its Recall score showed it can predict true positives better than Support Vector Machine (SVM), although it predicts more of the positives than it actually is a majority of the times. SVM ranked fourth, with accuracy of 0.095465 and F1-Score of 0.067861, the figure showing difficulty in classification of associated classes. Finally, the K-Neighbors model took the 6th place, with the predetermined accuracy of 0.065531 and the unsatisfactory results with the precision and recall indicating the problems of this algorithm in classification. We found out that Neural Networks and Random Forests are the best algorithms for this classification task, while K-Neighbors is far much inferior than the other classifiers.
Brunei Darussalam is a small Sultanate country with diverse forest cover. One of them would be Mangrove Forest. As it has four main administrative districts, Temburong would be the chosen case study area. The methods of collecting data for this article are by collecting secondary data from official websites and the map in this article (Figure 1) are showing the forest cover in Brunei Darussalam as of 2020. The aim of this article is to explain the mangrove forest especially at the Temburong District. As for the objectives, it would to be able to show the different types of forests in Temburong, hoping in ability to explain the different subtypes of mangroves forest and to explain in general the green jewel of Brunei Darussalam. Temburong has become the second highest tree coverage in Brunei Darussalam of 124 kha as of 2010, while the mangrove forest covering about 66% of total mangrove forest of 12,164 km2 out of 18,418 hectares. Mangrove forest has seven subtypes: Bakau species, Nyireh bunga, Linggadai, Nipah, Nipah-Dungun, Pedada and Nibong. Selirong Forest Reserve and Labu Forest Reserve are the two-mangrove forest reserves in Brunei Darussalam at Temburong District. Forest cover in Brunei Darussalam are 3800 hectares as of 2020 and has lost its tree coverage of 1.17 kha and one of the reasons would be forest fire and the tree cover loss due to fire is around 197 ha and the district that has lost its tree cover mostly was at Belait District of total 13.4 kha between the year 2001 until 2022.
Copyright © by EnPress Publisher. All rights reserved.