This research delves into the urgent requirement for innovative agricultural methodologies amid growing concerns over sustainable development and food security. By employing machine learning strategies, particularly focusing on non-parametric learning algorithms, we explore the assessment of soil suitability for agricultural use under conditions of drought stress. Through the detailed examination of varied datasets, which include parameters like soil toxicity, terrain characteristics, and quality scores, our study offers new insights into the complexities of predicting soil suitability for crops. Our findings underline the effectiveness of various machine learning models, with the decision tree approach standing out for its accuracy, despite the need for comprehensive data gathering. Moreover, the research emphasizes the promise of merging machine learning techniques with conventional practices in soil science, paving the way for novel contributions to agricultural studies and practical implementations.
Analyzing ecosystem service values (ESV) is crucial for achieving sustainable development. The main objective of this study was to assess the ecosystem services of the Cisadane watershed in Indonesia, with specific goals: (i) examining the spatiotemporal dynamics of ESV using multi-year land use and land cover (LULC) data from 2000 to 2021, (ii) exploring trade-offs and synergies among various ecosystem services, and (iii) investigating the sensitivity of ESV to changes in LULC. The results unveiled a significant decrease in forested areas (21.2%) and rice fields (10.2%), leading to a decline in ESV of $196.37 billion (33.17%) from 2010 to 2021. Throughout the period from 2000 to 2021, interactions between ESV were mainly synergistic. Projected from the baseline year (2021), the decline in ESV is expected to persist, ranging from $24.78 billion to $124.28 million by 2030 and from $45.78 billion to $124.28 million by 2050. The total estimated ecosystem values exhibited an inelastic response in terms of ecosystem value coefficients. The study also emphasizes an inelastic response in total estimated ESV coefficient concerning ecosystem value coefficients. These findings underscore the urgent need for targeted conservation efforts and sustainable land management practices to mitigate the further decline in ecosystem services and safeguard the long-term well-being of the Cisadane watershed and its inhabitants.
Currently, coal resource-based cities (CRBCs) are facing challenges such as ecological destruction, resource exhaustion, and disordered urban development. By analyzing the landscape pattern, the understanding of urban land use can be clarified, and optimization strategies can be proposed for urban transformation and sustainable development. In this study, based on the interpretation of remote sensing data for three dates, the landscape pattern changes in the urban area of Huainan City, a typical coal resource-based city in Anhui Province, China were empirically investigated. The results indicate that: (1) There is a significant spatial-temporal transformation of land use, with construction land gradually replacing arable land as the dominant land use type in the region. (2) Landscape indices are helpful to reveal the characteristics of land transfer and distribution of human activities during a process. At the landscape type level, construction land, grassland, and water bodies are increasingly affected by human activities. At the landscape composition level, the number of landscape types increases, and the distribution of different types of patches becomes more balanced. In addition, to address the problems caused by the coal mining subsidence areas in Huainan city, three landscape pattern optimization strategies are proposed at both macro and micro levels. The research findings contribute to a better understanding of land use changes and their driving forces, and offer valuable alternatives for ecological environment optimization.
In light of swift urbanization and the lack of precise land use maps in urban regions, comprehending land use patterns becomes vital for efficient planning and promoting sustainable development. The objective of this study is to assess the land use pattern in order to catalyze sustainable township development in the study area. The procedure adopted involved acquiring the cadastral layout plan of the study area, scanning, and digitizing it. Additionally, satellite imagery of the area was obtained, and both the cadastral plan and satellite imagery were geo-referenced and digitized using ArcGIS 9.2 software. These processes resulted in reasonable accuracy, with a root mean square (RMS) error of 0.002 inches, surpassing the standard of 0.004 inches. The digitized cadastral plan and satellite imagery were overlaid to produce a layered digital map of the area. A social survey of the area was conducted to identify the specific use of individual plots. Furthermore, a relational database system was created in ArcCatalog to facilitate data management and querying. The research findings demonstrated the approach's effectiveness in enabling queries for the use of any particular plot, making it adaptable to a wide range of inquiries. Notably, the study revealed the diverse purposes for which different plots were utilized, including residential, commercial, educational, and lodging. An essential aspect of land use mapping is identifying areas prone to risks and hazards, such as rising sea levels, flooding, drought, and fire. The research contributes to sustainable township development by pinpointing these vulnerable zones and providing valuable insights for urban planning and risk mitigation strategies. This is a valuable resource for urban planners, policymakers, and stakeholders, enabling them to make informed decisions to optimize land use and promote sustainable development in the study area.
The present study assessed the potential of sediment loading in Beteni, Lauruk, Andheri, and Harpan sub-watersheds of Phewa Lake and estimated the sediment yield in the year 2020. Morphometry, land use/land cover, geology, climate, and human and development factors of the sub-watersheds were studied to assess the potential of sediment loading in the sub-watersheds. SRTM DEM was used for the computation of morphometric parameters and land use/land cover maps were prepared by using Landsat imagery. Geology, rainfall data, census data, and road maps were collected from various secondary sources. The sediment yields of the four sub-watersheds in the year 2020 were estimated by measuring the sediment volume deposited in the sediment retention ponds at the outlet of each sub-watershed. Results indicated that Beteni had the highest potential for sediment loading, while Harpan had the lowest. Likewise, the sediment yields for Beteni, Lauruk, Andheri, and Harpan sub-watersheds in 2020 were estimated at 1,420.67 m3/km2/year, 2,280.14 m3/km2/year, 1,666.77 m3/km2/year, and 766.42 m3/km2/year, respectively. To reduce sedimentation in Phewa Lake, it is recommended to regularly maintain siltation dams and construct check dams along the drainage slopes, alongside other soil conservation measures and appropriate land use practices in the upstream areas of the sub-watersheds.
Objective: to achieve accurately and rapidly the mapping of agricultural land use and crop distribution at the township scale. Methods: this study, based on specific methods, such as, time-series remote sensing index threshold classification and maximum likelihood, classifies each land use type and extracts crop spatial information, under the guidance of Sentinel-2A remote sensing images, to carry out agricultural land use mapping at township scale. And the mapping concerned will be verified by comparing with an agricultural spatial information map of a 0.5 m resolution, which is based on WorldVieW-2 fused images. Results: (1) the area accuracy of grain and oil crop land, vegetable land, agricultural facilities land and garden land is fairly good, with 92.93%, 98.98%, 95.71% and 95.14% respectively, and within 8% variation from actual area; (2) the spatial information of plot boundary, farmland road network, and canal network produced by OSM road data and historical high-resolution images was overlayed with the classification results of Sentinel-2A multi-spectral image for mapping, which can improve the accuracy of plot boundary information of classification results for the image with 10 m resolution. Conclusions: the use of multi-source information fusion method, agricultural land use and crop distribution space big data produced by Sentinel-2A optical image, can effectively improve the accuracy and timeliness of land use mapping at the township scale, to provide technical reference for the application of remote sensing big data to carry out agricultural landscape analysis at the township scale, optimization and adjustment of agricultural structure, etc.
Copyright © by EnPress Publisher. All rights reserved.