The aim of this study was to analyze the perceived self and collective efficacy, individual and social norms and feelings related to environmental health concern among a sample of Pakistanis who are (or are not) engage in pro- environment behaviors in their daily lives. An ad hoc questionnaire with scales on pro-environmental behavior, self and collective efficacy, individual and social norms, and environmental health concerns was administered to adults in Lahore, Pakistan, and 833 respondents (62% males and 38% females) responded. Analysis of our research data shows that among those who engaged in daily pro-environmental behaviors, perceptions of individual and social norms and individual and collective efficacy were positively associated with concern for the environment and health. This study offers some interesting ideas that could be useful in developing federal, regional, local and community policies to promote daily pro-environmental behaviors. For example, in addition to advocating for environmental health and reducing one’s ecological footprint, social communication could explain that caring about environmental health (and thus adopting daily pro-environmental behaviors) is a way to manage one’s mental health. In this way, circular behavior is encouraged, which not only benefits the environment and the community, but also brings personal benefits.
Freshwater problems in coastal areas include the process of salt intrusion which occurs due to decreasing groundwater levels below sea level which can cause an increase in salt levels in groundwater so that the water cannot be used for water purposes, human consumption and agricultural needs. The main objective of this research is to implementation of RWH to fulfill clean water needs in tropical coastal area in Tanah Merah Village, Indragiri Hilir Regency, with the aim of providing clean water to coastal communities. The approach method used based on fuzzy logic (FL). The model input data includes the effective area of the house’s roof, annual rainfall, roof runoff coefficient, and water consumption based on the number of families. The BWS III Sumatera provided the rainfall data for this research, which was collected from the Keritang rainfall monitoring station during 2015 and 2021. The research findings show that FL based on household scale RWH technology is used to supply clean water in tropical coastal areas that the largest rainwater contribution for the 144 m2 house type for the number of residents in a house of four people with a tank capacity of 29 m2 is 99.45%.
The purpose of this study is to analyze issues related to the use of green technology and to provide a theoretical basis for how the application of green technology in agriculture can reduce inequality. Additionally, the study aims to explore policy alternatives based on the analysis of inequality reduction issues through farmer surveys. For this purpose, this study used survey data to analyze farmers’ perceptions, acceptance status, willingness to accept green technology, and perceptions of inequality. The quantitative analysis was performed to analyze the relationship between the acceptance of green technology and perceptions of inequality. The results confirmed that access to information, perception of climate change, and awareness of the need to reduce greenhouse gas emissions are major factors. In particular, the higher the satisfaction with policies regarding the introduction of green technology, the lower the perception of inequality. Specifically, the acceptance of green technology showed a significant positive correlation with access to information, perception of climate change, and awareness of the need to reduce greenhouse gas emissions, while perceptions of inequality showed a significant negative correlation with policy satisfaction. In conclusion, green technology in agriculture is vital for reducing climate change damage and inequality. However, targeted policy support for small-scale farmers is essential for successful adoption. This study provides policy implications related to the application of green technology in the agricultural sector, which can promote sustainable agricultural development.
This study conducts a comprehensive analysis of the aquaculture industry across 11 coastal regions in eastern China from 2017 to 2021 to assess their adaptability and resilience in the face of climate change. Cluster analysis was employed to examine regional variations in aquaculture adaptation by analyzing data on annual average temperatures, annual extreme high/low temperatures, annual average relative humidity, annual sunshine duration, and total yearly precipitation alongside various aquaculture practices. The findings reveal that southern regions, such as Fujian and Guangdong, demonstrate higher adaptability and resilience due to their stable subtropical climates and advanced aquaculture technologies. In contrast, northern regions like Liaoning and Shandong, characterized by more significant climatic fluctuations, exhibit varying degrees of cluster changes, indicating a continuous need to adjust aquaculture strategies to cope with climatic challenges. Additionally, the study explores the specific impacts of climate change on species selection, disease management, and water resource utilization in aquaculture, emphasizing the importance of developing region-specific strategies. Based on these insights, several strategic recommendations are proposed, including promoting species diversification, enhancing disease monitoring and control, improving water quality management techniques, and urging governmental support for policies and technical guidance to enhance the climate resilience and sustainability of the aquaculture sector. These strategies and recommendations aim to assist the aquaculture industry in addressing future climate challenges and fostering long-term sustainable development.
Climate change is the most important environmental problem of the 21st century. Severe climate changes are caused by changes in the average temperature and rainfall can affect economic sectors. On the other hand, the impact of climate change on countries varies depending on their level of development. Therefore, the aim of this paper is to investigate the relationship between climate changes and economic sectors in developed and developing countries for the period 1990–2021. For this purpose, a novel approach based on wavelet analysis and SUR model has been used. In this case, first all variables are decomposed into different frequencies (short, medium and long terms) using wavelet decomposition and then a SUR model is applied for the examination of climate change effects on agriculture, industry and services sectors in developed and developing countries. The findings indicate that temperature and rainfall have a significant negative and positive relationship with the agriculture, industry and services sectors in developed and developing countries, respectively. But severity of the negative effects is greater in the agricultural and industrial sectors in all frequencies (short, medium and long terms) compared to service sector. Furthermore, the severity of the positive effects is greater in the agricultural sector in all frequencies of developing countries compared to the industrial and services sectors. Finally, developing countries are more vulnerable to climate change in all sectors compared to developed countries.
Copyright © by EnPress Publisher. All rights reserved.