This study conducts a comparative analysis of various machine learning and deep learning models for predicting order quantities in supply chain tiers. The models employed include XGBoost, Random Forest, CNN-BiLSTM, Linear Regression, Support Vector Regression (SVR), K-Nearest Neighbors (KNN), Multi-Layer Perceptron (MLP), Recurrent Neural Network (RNN), Bidirectional LSTM (BiLSTM), Bidirectional GRU (BiGRU), Conv1D-BiLSTM, Attention-LSTM, Transformer, and LSTM-CNN hybrid models. Experimental results show that the XGBoost, Random Forest, CNN-BiLSTM, and MLP models exhibit superior predictive performance. In particular, the XGBoost model demonstrates the best results across all performance metrics, attributed to its effective learning of complex data patterns and variable interactions. Although the KNN model also shows perfect predictions with zero error values, this indicates a need for further review of data processing procedures or model validation methods. Conversely, the BiLSTM, BiGRU, and Transformer models exhibit relatively lower performance. Models with moderate performance include Linear Regression, RNN, Conv1D-BiLSTM, Attention-LSTM, and the LSTM-CNN hybrid model, all displaying relatively higher errors and lower coefficients of determination (R²). As a result, tree-based models (XGBoost, Random Forest) and certain deep learning models like CNN-BiLSTM are found to be effective for predicting order quantities in supply chain tiers. In contrast, RNN-based models (BiLSTM, BiGRU) and the Transformer show relatively lower predictive power. Based on these results, we suggest that tree-based models and CNN-based deep learning models should be prioritized when selecting predictive models in practical applications.
This research explores the advancement of Artificial Intelligence (AI) in Occupational Health and Safety (OHS) across high-risk industries, highlighting its pivotal role in mitigating the global incidence of occupational incidents and diseases, which result in approximately 2.3 million fatalities annually. Traditional OHS practices often fall short in completely preventing workplace incidents, primarily due to limitations in human-operated risk assessments and management. The integration of AI technologies has been instrumental in automating hazardous tasks, enhancing real-time monitoring, and improving decision-making through comprehensive data analysis. Specific AI applications discussed include drones and robots for risky operations, computer vision for environmental monitoring, and predictive analytics to pre-empt potential hazards. Additionally, AI-driven simulations are enhancing training protocols, significantly improving both the safety and efficiency of workers. Various studies supporting the effectiveness of these AI applications indicate marked improvements in risk management and incident prevention. By transitioning from reactive to proactive safety measures, the implementation of AI in OHS represents a transformative approach, aiming to substantially reduce the global burden of occupational injuries and fatalities in high-risk sectors.
Falling is one of the most critical outcomes of loss of consciousness during triage in emergency department (ED). It is an important sign requires an immediate medical intervention. This paper presents a computer vision-based fall detection model in ED. In this study, we hypothesis that the proposed vision-based triage fall detection model provides accuracy equal to traditional triage system (TTS) conducted by the nursing team. Thus, to build the proposed model, we use MoveNet, a pose estimation model that can identify joints related to falls, consisting of 17 key points. To test the hypothesis, we conducted two experiments: In the deep learning (DL) model we used the complete feature consisting of 17 keypoints which was passed to the triage fall detection model and was built using Artificial Neural Network (ANN). In the second model we use dimensionality reduction Feature-Reduction for Fall model (FRF), Random Forest (RF) feature selection analysis to filter the key points triage fall classifier. We tested the performance of the two models using a dataset consisting of many images for real-world scenarios classified into two classes: Fall and Not fall. We split the dataset into 80% for training and 20% for validation. The models in these experiments were trained to obtain the results and compare them with the reference model. To test the effectiveness of the model, a t-test was performed to evaluate the null hypothesis for both experiments. The results show FRF outperforms DL model, and FRF has same accuracy of TTS.
Breast cancer was a prevalent form of cancer worldwide. Thermography, a method for diagnosing breast cancer, involves recording the thermal patterns of the breast. This article explores the use of a convolutional neural network (CNN) algorithm to extract features from a dataset of thermographic images. Initially, the CNN network was used to extract a feature vector from the images. Subsequently, machine learning techniques can be used for image classification. This study utilizes four classification methods, namely Fully connected neural network (FCnet), support vector machine (SVM), classification linear model (CLINEAR), and KNN, to classify breast cancer from thermographic images. The accuracy rates achieved by the FCnet, SVM, CLINEAR, and k-nearest neighbors (KNN) algorithms were 94.2%, 95.0%, 95.0%, and 94.1%, respectively. Furthermore, the reliability parameters for these classifiers were computed as 92.1%, 97.5%, 96.5%, and 91.2%, while their respective sensitivities were calculated as 95.5%, 94.1%, 90.4%, and 93.2%. These findings can assist experts in developing an expert system for breast cancer diagnosis.
Copyright © by EnPress Publisher. All rights reserved.