This contribution questions young people’s access to digital networks at the scale of intermediate cities in Saint-Louis. Thus, it analyzes the prescriptions of digital actors responsible for the development of digital economy in relation with the orientations of the Senegal Digital 2025 strategy. This is a pretex to highlight the gaps between official political discourses and the level of deployment of digital infrastructures. The study highlights the need to repoliticize the needs of populations for broadband and very high-speed connections to promote local initiatives for youth participation in Saint-Louis. Indeed, datas relating to access and use of the Internet by young people reveal inequalities linked to household income, the disparity of infrastructure and digital equipment, and the discontinuity in neighborhood development, but also to the adaptability of the internet service marketed. Through urban and explanatory sociology mobilized through the approach of young people’s real access to the Internet, our analyzes have shown at the scale of urban neighborhoods the impact of the actions recommended by those involved in the development of populations’ access to Internet. The result is that the majority of young people are forced to access the Internet through medium-speed mobile networks.
The research aimed to: 1) analyze components and indicators of digital transformation leadership among school administrators, 2) assess their leadership needs, and 3) develop mechanism models to promote this leadership. A mixed-method approach was applied, involving three sample groups: 8 experts, 406 administrators, and 7 experts. Data collection tools included semi-structured interviews, leadership scales, needs assessments, and focus group discussions, with analysis performed through construct validity testing, needs assessment, and content analysis. The findings revealed: 1) The components and indicators of digital transformation leadership showed structural validity, as confirmed by the model’s alignment with empirical data (Chi-Square = 82.3, df = 65, p = 0.072, CFI = 0.998, TLI = 0.997, RMR = 0.00965, RMSEA = 0.0256). 2) Among the leadership components, “innovative knowledge” ranked highest in need (PNImodified = 0.075), followed by “ideological influence” (0.066), “consideration of individuality” (0.055), “intellectual stimulation” (0.052), and “inspiration” (0.053). 3) Mechanism models for promoting leadership emphasized enhancing these five components to strengthen administrators’ skills in applying technology, managing teaching and development plans, and fostering innovation. Administrators were encouraged to tailor strategies to individual needs, inspire personnel, and create a commitment to organizational change and development. These mechanisms aim to equip administrators to effectively lead transformations, motivate staff, and drive educational institutions to adapt and thrive in evolving environments.
Since the proposal of the low-carbon economy plan, all countries have deeply realized that the economic model of high energy and high emission poses a threat to human life. Therefore, in order to enable the economy to have a longer-term development and comply with international low-carbon policies, enterprises need to speed up the transformation from a high-carbon to a low-carbon economy. Unfortunately, due to the massive volume of data, developing a low-carbon economic enterprise management model might be challenging, and there is no way to get more precise forecast data. This study tackles the challenge of developing a low-carbon enterprise management mode based on the grey digital paradigm, with the aim of finding solutions to these issues. This paper adopts the method of grey digital model, analyzes the strategy of the enterprise to build the model, and makes a comparative experiment on the accuracy and performance of the model in this paper. The results show that the values of MAPE, MSE and MAE of the model in this paper are the lowest. And the r^2 of the model in this paper is also the highest. The MAPE value of the model in this paper is 0.275, the MSE is 0.001, and the MAE is 0.003. These three indicators are much lower than other models, indicating that the model has high prediction accuracy. r2 is 0.9997, which is much higher than other models, indicating that the performance of this model is superior. With the support of this model, the efficiency of building an enterprise model has been effectively improved. As a result, developing an enterprise management model for the low-carbon economy based on the gray numerical model can offer businesses new perspectives into how to quicken the shift to the low-carbon economy.
Since 2022, global geopolitical conflicts have intensified, and there has been a notable increase in the international community’s demand for currency diversification. This has created a new opportunity for the internationalization of the Renminbi (RMB). This paper examines the factors influencing the internationalization of the RMB, with a particular focus on its role as a unit of account, medium of exchange and store of value. These functions are considered in conjunction with the digital technological innovation represented by e-CNY. The methodology employed is based on the vector autoregression (VAR) model, Granger causality test and variance decomposition analysis. The Granger causality test indicates that digital technology innovation is not the primary driver of RMB internationalization at this juncture. The impulse response analysis and variance decomposition analysis revealed that the impact and direction of influence exerted by the various factors on RMB internationalization exhibit considerable discrepancies.
The advent of Artificial Intelligence (AI) has transformed Learning Management Systems (LMSs), enabled personalized adaptation and facilitated distance education. This study employs a bibliometric analysis based on PRISMA-2020 to examine the integration of AI in LMSs from an educational perspective. Despite the rapid progress observed in this field, the literature reveals gaps in the effectiveness and acceptance of virtual assistants in educational contexts. Therefore, the objective of this study is to examine research trends on the use of AI in LMSs. The results indicate a quadratic polynomial growth of 99.42%, with the years 2021 and 2015 representing the most significant growth. Thematic references include authors such as Li J and Cavus N, the journal Lecture Notes in Computer Science, and countries such as China and India. The thematic evolution can be observed from topics such as regression analysis to LMS and e-learning. The terms e-learning, ontology, and ant colony optimization are highlighted in the thematic clusters. A temporal analysis reveals that suggestions such as a Cartesian plane and a league table offer a detailed view of the evolution of key terms. This analysis reveals that emerging and growing words such as Learning Style and Learning Management Systems are worthy of further investigation. The development of a future research agenda emerges as a key need to address gaps.
Copyright © by EnPress Publisher. All rights reserved.