A logistics service company in Batam faces challenges related to warehouse load fulfillment and sorting inaccuracies. This study aims to identify proposed efficiency improvements to the goods distribution system using the cross-docking method. The research method chosen is cross-docking, a technique that eliminates the storage process in the warehouse, thus saving time and cost. The research findings show significant benefits, especially in achieving zero inventory efficiency. Data processing and discussion revealed that efficiencies were apparent by increasing the sorting tables from 1 to 6, with an output of 90,000 kg during aircraft loading and unloading (compared to approximately 77,000 kilograms). This efficiency arises from the larger output of the sorting tables compared to the input, eliminating the need for warehousing and adding ten trucks. As a result, the shipment can be completed in one trip, with no goods stored in the warehouse. The analysis shows that implementing cross-docking in the company increases efficiency in distributing goods to forwarding partners.
Inland Container Depots (ICDs) are inland multi-modal terminals where goods in intermodal loading units can be transferred directly to seaports. The contribution of ICDs to regions’ economic and social growth is undeniable. To achieve the sustainable development of ICDs, evaluating and improving their service quality is critical. This study aims to investigate the factors contributing to the service quality of ICD in a developing country. The data utilized covers some ICDs in the Red River Delta, Vietnam. Regarding analytic methods, descriptive statistics first were run to show the level of aspects of service quality of ICDs. Subsequently, attitudinal statements were analyzed using exploratory factor analysis before linear regression was applied to recognize the factors influencing the service quality of ICDs. Generally, the service quality of ICDs was evaluated at an acceptable level but far from the high one. The results suggested that the four influential service quality factors included location and accessibility, facilities, process and management, and labor. Based on the findings of contributing factors, managerial implications were proposed.
Choosing a university is a crucial decision for each field of study, as it significantly influences the quality of graduates. An important factor in this decision is the university’s annual benchmark scores. The benchmark score represents the minimum score required for admission. This study evaluates the benchmark scores in the logistics sector for several prominent universities in Vietnam during the period 2021–2023. The research process utilized data on the benchmark scores for the years 2021, 2022, and 2023. The weights of these benchmark scores were calculated using the Rank Order Centroid (ROC) method, and the Probability method was employed to compare the benchmark scores of the universities. The analysis identified C3 as the criterion with the highest importance, while U3 emerged as the top-ranked alternative. The two-stage comprehensive sensitivity analysis revealed that universities consistently ranked high or low regardless of the method used to calculate benchmark score weights or the method employed for ranking. Additionally, the smallest weight change that affected the overall Probability ranking was 4.61%. This study provides significant guidance for students in selecting a university for logistics studies and serves as a foundational reference for universities to assess their capabilities in logistics education, thereby fostering healthy competition among institutions.
This research investigates the determinants of digital transformation among Vietnamese logistics service providers (LSPs). Employing the Technological-Organizational-Environmental framework and Resource Fit theory, the study identifies key factors influencing this process across different three stages: digitization, digitalization, digital transformation. Data from in-depth interviews with industry experts and a survey of 390 LSPs were analyzed using covariance-based structural equation modeling (CB-SEM). The findings reveal that the factors influencing the digital transformation of Vietnamese LSPs evolve across different stages. In the initial phase, information technology infrastructure, financial resources, employee capabilities, external pressures, and support services are key determinants. As digitalization progresses, leadership emerges as a crucial factor alongside the existing ones. In the final stage, the impact of these factors persists, with leadership and employee capabilities becoming increasingly important.
In response to the increasing global emphasis on sustainability and the specific challenges faced by small and medium-sized enterprises (SMEs) in China, this study explores the integration of green reverse logistics within these enterprises to enhance their sustainability and competitiveness. The aim of this study is to understand the relationship between reverse logistics, green logistics, and sustainable development. Data analysis was conducted utilizing a combination of descriptive statistics and correlation analysis. A survey of 311 participants examined SMEs’ performance in reverse logistics practices and their initiatives in green logistics and sustainable development. The empirical findings reveal significant progress in reverse logistics practices among SMEs, reducing environmental impact and improving resource efficiency. Moreover, a notable positive correlation was identified between reverse logistics promotion and advancements in green logistics and sustainable development. SMEs’ investment in reverse logistics is closely linked to their efforts in environmentally conscious and sustainable supply chain management. These insights benefit SMEs and supply chain practitioners and offer a valuable reference for future research and practical applications in this field.
The proportion of national logistics costs to Gross Domestic Product (NLC/GDP) serve as a valuable indicator for estimating a country’s overall macro-level logistics costs. In some developing nations, policies aimed at reducing the NLC/GDP ratio have been elevated to the national agenda. Nevertheless, there is a paucity of research examining the variables that can determine this ratio. The purpose of this paper is to offer a scientific approach for investigating the primary determinants of the NLC/GDP and to advice policy for the reduction of macro-level logistics costs. This paper presents a systematic framework for identifying the essential criteria for lowering the NLC/GDP score and employs co-integration analysis and error correction models to evaluate the impact of industrial structure, logistics commodity value, and logistics supply scale on NLC/GDP using time series data from 1991 to 2022 in China. The findings suggest that the industrial structure is the primary factor influencing logistics demand and a significant determinant of the value of NLC/GDP. Whether assessing long-term or short-term effects, the industrial structure has a substantial impact on NLC/GDP compared to logistics supply scale and logistics commodity value. The research offers two policy implications: firstly, the goals of reducing NLC/GDP and boosting the logistics industry’s GDP are inherently incompatible; it is not feasible to simultaneously enhance the logistics industry’s GDP and decrease the macro logistics cost. Secondly, if China aims to lower its macro-level logistics costs, it must make corresponding adjustments to its industrial structure.
Copyright © by EnPress Publisher. All rights reserved.