An extensive assessment index system was developed to evaluate the integration of industry and education in higher vocational education. The system was designed using panel data collected from 31 provinces in China between 2016 and 2022. The study utilized the entropy approach and coupled coordination degree model to examine the temporal and spatial changes in the level of growth of the integration of industry and education in higher vocational education, as well as the factors that impact it. In order to examine how the integration of industry and education in higher vocational education develops over time and space, as well as the factors that affect it, we utilized spatial phasic analysis, Tobit regression model, and Dagum’s Gini coefficient. The study’s findings suggest that between 2016 and 2022, the integration of industry and education in higher vocational education showed a consistent improvement in overall development. Nevertheless, there are still significant regional differences, with certain areas showing limited levels of integration, while the bulk of regions are either in a state of low integration with high clustering or low integration with low clustering. Most locations showed either a “low-high” or “low-low” level of agglomeration, indicating a significant degree of spatial concentration, with a clear trend of higher concentration in the east and lower concentration in the west. The progress of industrial structure and the degree of regional economic development have a substantial impact on the amount of integration of industry and education in higher vocational education. There is a notable increase in the amount of integration between industry and education in higher vocational education, which has a favorable effect. Conversely, the local employment rate has a substantial negative effect on this integration. Moreover, the direct influence of industrial structure optimization is restricted. The Gini coefficient of the development level of integration of industry and education in higher vocational education exhibits a slight rising trend. Simultaneously, there is a varying increase in the Gini coefficient inside the group and a decrease in the Gini coefficient between the groups. The disparities in the level of integration between Industry and Education in the provincial area primarily stem from inter-group variations across the locations. To promote the integration of industry and education in higher vocational education, it is recommended to strengthen policy support and resource allocation, address regional disparities, improve professional configuration, and increase investment in scientific and technological innovation and talent development.
The increase in energy consumption is closely linked to environmental pollution. Healthcare spending has increased significantly in recent years in all countries, especially after the pandemic. The link between healthcare spending, greenhouse gas emissions and gross domestic product has led many researchers to use modelling techniques to assess this relationship. For this purpose, this paper analyzes the relationship between per capita healthcare expenditure, per capita gross domestic product and per capita greenhouse gas emissions in the 27 EU countries for the period 2000 to 2020 using Error Correction Westerlund, and Westerlund and Edgerton Lagrange Multiplier (LM) bootstrap panel cointegration test. The estimation of model coefficients was carried out using the Augmented Mean Group (AMG) method adopted by Eberhardt and Teal, when there is heterogeneity and cross-sectional dependence in cross-sectional units. In addition, Dumitrescu and Hurlin test has been used to detect causality. The findings of the study showed that in the long run, per capita emissions of greenhouse gases have a negative effect on per capita health expenditure, except from the case of Greece, Lithuania, Luxembourg and Latvia. On the other hand, long-term individual co-integration factors of GDP per capita have a positively strong impact on health expenditure per capita in all EU countries. Finally, Dumitrescu and Urlin’s causality results reveal a significant one-way causality relationship from GDP per capita and CO2 emissions per capita to healthcare expenditure per capita for all EU countries.
This research explores the intricate relationship between digitalization, economic development, and non-cash payments in the ASEAN-7 countries over a ten-year period from 2011 to 2020. Focusing on factors such as commercial bank branches, broad money, and inflation, the study employs panel data regression analysis to investigate their impact on automated teller machine (ATM) usage. The findings reveal that commercial bank branches significantly influence ATM usage, emphasizing the role of accessibility, services, and technological preferences. Broad money also shows a significant impact on ATM transactions, reflecting the interplay between fund availability and non-cash transactions. However, inflation does not exhibit a direct influence on ATM usage. The research underscores the importance of maintaining service quality and security in the banking sector to enhance digital financial inclusion. Future research opportunities include exploring diverse non-cash payment methods and extending studies to countries with significant global economic impacts. This research contributes valuable insights to policymakers aiming to enhance digital financial inclusion policies, ultimately fostering economic growth through the digital economy in the ASEAN-7 region.
This study deals with the impact of Vietnam bank size, loans, credit risk, and liquidity on Vietnam banks’ net interest margin, which are crucial for economic development. High profit margins result in a lower bad debt ratio due to timely loan collection and good liquidity. This study applies a panel data model to evaluate the relationship among bank size, loans, credit risk, liquidity, and marginal profitability, which are increasingly important in commercial bank growth. Data were collected from 2010 to 2022, and test methods were applied to select a good-fit model. Realizing that the factors that have a close correlation and affect the profit margin are 33.6% and 16.07%, 75.2%, 37.51%, 64.30%, and 41.11%, and R2 is 59.04%, respectively, this suggests that financial managers need to develop appropriate strategies and policies to adjust the factors that adversely affect commercial bank profitability.
The significance of infrastructure development as a determinant of economic growth has been widely studied by economists and policymakers. Though there is no much debate about the importance of infrastructure on growth, the extent to which infrastructure affects growth in the long run is often debated among researchers. This paper aims to examine the effect of infrastructure development on economic growth in ten sub-Saharan Africa. This study uses balanced panel data of ten African countries, particularly sub-Saharan Africa over the period of 2010–2020 by analyzing a set of independent variables with relation to the dependent, which is GDP per capita. The study has found that water supply & sanitation index and electricity index have positive and significant relationship with economic growth, while transport index and Information & Communications (ICT) have negative relationship with economic growth in these countries.
Copyright © by EnPress Publisher. All rights reserved.