In today’s fast-moving, disrupted business environment, supply chain risk management is crucial. More critically, Industry 4.0 has conferred competitive advantages on supply chains through the integration of digital technologies into manufacturing and logistics, but it also implies several challenges and opportunities regarding the management of these risks. This paper looks at some ways emerging technologies, especially Artificial Intelligence (AI), help address pressing concerns about the management of risk and sustainability in logistics and supply chains. The study, using a systemic literature review (SLR) backed by a mapping study based on the Scopus database, reveals the main themes and gaps of prior studies. The findings indicate that AI can substantially enhance resilience through early risk identification, optimizing operations, enriching decision-making, and ensuring transparency throughout the value chain. The key message from the study is to bring out what technology contributes to rendering supply chains resilient against today’s uncertainties.
This study investigates the escalating complexity and unpredictability of global supply chains, with a particular emphasis on resilience in the agricultural sector of Antioquia, Colombia. The aim of the study is to identify and analyze the dynamic capabilities, specifically flexibility and adaptability that significantly enhance resilience within agri-food supply chains. Given the sector’s vulnerability to external disruptions, such as climate change and economic volatility, a thorough understanding of these capabilities is imperative for the formulation of effective risk management strategies. This research is essential to provide empirical insights that can inform stakeholders on fortifying their supply chains, thereby contributing to enhanced competitiveness and sustainability. By presenting a comprehensive framework for evaluating dynamic capabilities, this study not only addresses existing gaps in the literature but also offers practical recommendations aimed at bolstering resilience in the agricultural sector.
The Oued Kert watershed in Morocco is essential for local biodiversity and agriculture, yet it faces significant challenges due to meteorological drought. This research addresses an urgent issue by aiming to understand the impacts of drought on vegetation, which is crucial for food security and water resource management. Despite previous studies on drought, there are significant gaps, including a lack of specific analyses on the seasonal effects of drought on vegetation in this under-researched region, as well as insufficient use of appropriate analytical tools to evaluate these relationships. We utilized the Standardized Precipitation Index (SPI) and the Normalized Difference Vegetation Index (NDVI) to analyze the relationship between precipitation and vegetation health. Our results reveal a very strong correlation between SPI and NDVI in spring (98%) and summer (97%), while correlations in winter and autumn are weaker (66% and 55%). These findings can guide policymakers in developing appropriate strategies and contribute to crop planning and land management. Furthermore, this study could serve as a foundation for awareness and education initiatives on the sustainable management of water and land resources, thereby enhancing the resilience of local ecosystems in the face of environmental challenges.
Accurate drug-drug interaction (DDI) prediction is essential to prevent adverse effects, especially with the increased use of multiple medications during the COVID-19 pandemic. Traditional machine learning methods often miss the complex relationships necessary for effective DDI prediction. This study introduces a deep learning-based classification framework to assess adverse effects from interactions between Fluvoxamine and Curcumin. Our model integrates a wide range of drug-related data (e.g., molecular structures, targets, side effects) and synthesizes them into high-level features through a specialized deep neural network (DNN). This approach significantly outperforms traditional classifiers in accuracy, precision, recall, and F1-score. Additionally, our framework enables real-time DDI monitoring, which is particularly valuable in COVID-19 patient care. The model’s success in accurately predicting adverse effects demonstrates the potential of deep learning to enhance drug safety and support personalized medicine, paving the way for safer, data-driven treatment strategies.
Copyright © by EnPress Publisher. All rights reserved.