Electricity generation around the world is mainly produced by using non-renewable energy sources especially in the commercial buildings. However, Rooftop solar Photovoltaic (PV) system produced a significant impact on environmental and economical benefits in comparison to the conventional energy sources, thus contributing to sustainable development. Such PV’s system encourages the production of electricity without greenhouse gas emissions that leads to a clean alternative to fossil fuels and economic prosperity even in less developed areas. However, efficiency of rooftop solar PV systems depends on many factors, the dominant being geographical (latitude, longitude, and solar intensity), environmental (temperature, wind, humidity, pollution, dust, rain, etc.) and the type of PV (from raw material extraction and procurement, to manufacturing, disposal, and/or recycling) used. During the feasibility analysis of the environment, geographical conditions are keep in well consideration, but the pollution level of the city is always overlooked, which significantly influences the performance of the PV installations.
Therefore, this research work focused on the performance of rooftop solar PV installed in one of the most polluted city in India. Here, the loss in power generation of rooftop solar PV has been studied for the effect of deposited dust particles, wind velocity before and after the cleaning of the panels. The actual data has been utilized for the calculation of the energy efficiency and power output of the PV systems. According to the results, it has been concluded that dust deposition, wind speed and pollution level in city significantly reduces the efficiency of solar photovoltaic panel. Hence, an overview of social and environmental impacts of PV technologies is presented in this paper along with potential benefits and pitfalls.
Stress has evolutionary roots that help human beings evolve and survive. Existing workplace mental health models typically view stress as the direct cause of poor mental health. Such models focus on strategies to eliminate it. Guided by O’Connor and Kirtley’s integrated motivational-volitional (IMV) model, we posit that demanding jobs and high-stress environments do not directly impact an individual’s mental health but trigger a “sense of self” moderator (SSM), which then leads to mental health outcomes. This moderator is modified by the workplace’s organizational design and individual’s traits. We propose a Workplace Mental Health (WMH) Model, which suggests that by addressing these SSM modifiers through evidence-based interventions at organizational and individual levels, even in high-stress environments, organizations can have mentally healthy workforces and build high-performance workplaces. This paper assumes that stress is an inalienable part of any work environment and that a secular reduction in stress levels in modern society is infeasible. Although some individuals in high-stress job environments develop mental illness, many do not, and some even thrive. This differential response suggests that stress may act as a trigger, but an individual’s reaction to it is influenced more by other factors than the stress itself.
Effective small and medium enterprise (SME) leadership demands creative solutions to ensure organisations survive and thrive during the turbulent times that COVID-19 continues to bring. This paper explores how SME leaders (in micro and small organisations) prioritise and access the skills and development needed to provide effective and sustainable leadership to organisations, focusing on the role of resilience and the benefits it provides. Participants were selected through purposive and snowballing sampling. Online surveys and semi-structured interviews were conducted and provided qualitative data that contributes to an understanding of the role of resilience and the view of participants as to what is needed to effectively respond to a dynamic environment. Evidence shows that SME leaders prioritise learning and development opportunities that provide demonstrable benefits throughout the organisation. Building business resilience remains a fuzzy concept; however, viewing resilience as a multi-level construct offers benefits when designing and delivering development opportunities. It has been found that networking, partnerships, and relationship building promote resilience and may offer a solution to how to embed resilience building into development opportunities that SME leaders value and wish to engage with. This article contributes by illustrating and exploring leadership development within SMEs during a period of unexpected and untested uncertainty. The pandemic caused major shock waves within business communities, and SMEs were significantly affected. The research is limited in that it is expected to be a once-in-a lifetime event, and as such conditions may not be replicable, learning opportunities for other ‘shock’ events are possible. The findings of this paper have relevance to practice in that, while the event may be one-off, shocks to the business environment are not.
Quantum dot can be seen as an amazing nanotechnological discovery, including inorganic semiconducting nanodots as well as carbon nanodots, like graphene quantum dots. Unlike pristine graphene nanosheet having two dimensional nanostructure, graphene quantum dot is a zero dimensional nanoentity having superior aspect ratio, surface properties, edge effects, and quantum confinement characters. To enhance valuable physical properties and potential prospects of graphene quantum dots, various high-performance nanocomposite nanostructures have been developed using polymeric matrices. In this concern, noteworthy combinations of graphene quantum dots have been reported for a number of thermoplastic polymers, like polystyrene, polyurethane, poly(vinylidene fluoride), poly(methyl methacrylate), poly(vinyl alcohol), and so on. Due to nanostructural compatibility, dispersal, and interfacial aspects, thermoplastics/graphene quantum dot nanocomposites depicted unique microstructure and technically reliable electrical/thermal conductivity, mechanical/heat strength, and countless other physical properties. Precisely speaking, thermoplastic polymer/graphene quantum dot nanocomposites have been reported in the literature for momentous applications in electromagnetic interference shielding, memory devices, florescent diodes, solar cells photocatalysts for environmental remediation, florescent sensors, antibacterial, and bioimaging. To the point, this review article offers an all inclusive and valuable literature compilation of thermoplastic polymer/graphene quantum dot nanocomposites (including design, property, and applied aspects) for field scientists/researchers to carry out future investigations on further novel designs and valued property-performance attributes.
2050 building stock might be buildings that already exist today. A large percentage of these buildings fail today’s energy performance standards. Highly inefficient buildings delay progress toward a zero-carbon-building goal (SDGs 7 and 13) and can lead to investments in renewable energy infrastructure. The study aims to investigate how bioclimatic design strategies enhance energy efficiency in selected orthopaedic hospitals in Nigeria. The study objective includes Identifying the bioclimatic design strategies that improve energy efficiency in orthopaedic hospitals, assessing the energy efficiency requirements in an orthopaedic hospital in Nigeria and analysing the effects of bioclimatic design strategies in enhancing energy efficiency in an orthopaedic hospital in Nigeria. The study engaged a mixed (qualitative and quantitative) research method. The investigators used case study research as a research design and a deductive approach as the research paradigm. The research employed a questionnaire survey for quantitative data while the in-depth Interview (IDI) guide and observation schedule for qualitative data. The findings present a relationship between bioclimatic design strategies and energy conservation practices in an orthopaedic hospital building. Therefore, implementing bioclimatic design strategies might enhance energy efficiency in hospital buildings. The result of the study revealed that bioclimatic hospital designs may cost the same amount to build but can save a great deal on energy costs. Despite the challenges, healthcare designers and owners are finding new ways to integrate bioclimatic design strategies into new healthcare construction to accelerate patient and planet healing.
Life experience and moral practice are the most important ways of moral learning and moral implementation. In the teaching of lower grade morality and rule of law courses, the students are connected with the reality of life, and the teaching content is carefully designed, starting from the students' life experience and learning interests, to explore and provide time and space for students to explore and experience independently, and to guide students through exploration and learning. Interaction, experience and perception, to obtain their own emotional experience. At the same time, it deepens students' intimacy to the learning content, inspires students' curiosity, and exerts students' subjective initiative, so as to determine students' dominant position in the classroom.
Copyright © by EnPress Publisher. All rights reserved.