One of the main concerns in computer science today is integrating the Internet of Things (IoT) into manufacturing processes. This trend could influence a country’s strategy and policy development regarding technological infrastructure. However, despite extensive research on the implementation of IoT in manufacturing, no study has yet focused on the growing research interest in this topic. Based on 2487 papers indexed in the Scopus database between 2013 and 2023, this bibliometric review examines current trends and patterns in IoT research in manufacturing. The literature was selected and screened using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines. Data visualization was created using VOSviewer. The results show a notable increase in research papers centered around IoT in manufacturing. The findings reveal patterns and trends in IoT research publications in the manufacturing sector, author collaboration networks, country collaboration networks, and both established and newly trending topics surrounding IoT in the manufacturing industry.
This paper describes the significance, content, progress and corresponding basic theory and experimental research methods of micron/nanometer scale thermal science and engineering, which is one of the latest cutting-edge disciplines, and analyzes the effects of micron nanometer devices on the scale effect series of challenging hot issues, discussed the corresponding emergence of some new phenomena and new concepts, pointed out that the micron/nano thermal science aspects of the recent development of several types of theory and experimental technology success and shortcomings, and summed up a number for the exploration of the new ways and new directions, especially on some typical micron/nano-thermal devices and micro-scale biological heat transfer in some important scientific issues and their engineering applications were introduced.
The obtaining of new data on the transformation of parent materials into soil and on soil as a set of essential properties is provided on the basis of previously conducted fundamental studies of soils formed on loess-like loams in Belarus (15,000 numerical indicators). The study objects are autochthonous soils of uniform granulometric texture. The basic properties without which soils cannot exist are comprehensively considered. Interpolation of factual materials is given, highlighting the essential properties of soils. Soil formation is analyzed as a natural phenomenon depending on the life activity of biota and the water regime. Models for differentiation of the chemical profile and bioenergy potential of soils are presented. The results of the represented study interpret the available materials taking into account publications on the biology and water regime of soils over the past 50 years into three issues: the difference between soil and soil-like bodies; the soil formation as a natural phenomenon of the mobilization of soil biota from the energy of the sun, the atmosphere, and the destruction of minerals in the parent materials; and the essence of soil as a solid phase and as an ecosystem. The novelty of the article study is determined by the consideration of the priority of microorganisms and water regime in soil formation, chemical-analytical identification of types of water regime, and determination of the water regime as a marker of soil genesis.
Land use changes have been demonstrated to exert a significant influence on urban planning and sustainable development, particularly in regions undergoing rapid urbanization. Tehran Province, as the political and economic capital of Iran, has undergone substantial growth in recent decades. The present study employs sophisticated Geographic Information System (GIS) instruments and the Google Earth Engine (GEE) platform to comprehensively track and analyze land use change over the past two decades. A comprehensive analysis of Landsat images of the Tehran metropolitan area from 2003 to 2023 has yielded significant insights into the patterns of land use change. The methodology encompasses the utilization of GIS, GEE, and TerrSet techniques for image classification, accuracy assessment, and change detection. The Kappa coefficients for the maps obtained for 2016 and 2023 were 0.82 and 0.87 for four classes: built-up, vegetation cover, barren land, and water bodies. The findings suggest that, over the past two decades, Tehran Province has undergone a substantial decline in ecological and vegetative areas, amounting to 2.4% (458.3 km2). Concurrently, the urban area and the barren lands have expanded by 287.5 and 125.5 km2, respectively. The increase in water bodies during this period is likely attributable to the reduction of vegetation cover and dam construction in the region. The present study demonstrates that remote sensing and GIS are excellent tools for monitoring environmental and sustainable urban development in areas experiencing rapid urbanization and land use changes.
The rapid expansion of smart cities has led to the widespread deployment of Internet of Things (IoT) devices for real-time data collection and urban optimization. However, these interconnected systems face critical cybersecurity risks, including data tampering, unauthorized access, and privacy breaches. This paper proposes a blockchain-based framework designed to enhance the security, integrity, and resilience of IoT data in smart city environments. Leveraging a private blockchain, the system ensures decentralized, tamper-proof data storage, and transaction verification through digital signatures and a lightweight Proof of Work consensus mechanism. Smart contracts are employed to automate access control and respond to anomalies in real time. A Python-based simulation demonstrates the framework’s effectiveness in securing IoT communications. The system supports rapid transaction validation with minimal latency and enables timely detection of anomalous patterns through integrated machine learning. Evaluations show that the framework maintains consistent performance across diverse smart city components such as transportation, healthcare, and building security. These results highlight the potential of the proposed solution to enable secure, scalable, and real-time IoT ecosystems for modern urban infrastructures.
There is a growing trend among elderly people to live alone and this trend is expected to increase in the future. Social isolation and limited support can have a negative impact on the physical and mental well-being of older adults. The increasing life expectancy and expanding geriatric population necessitate the development of innovative solutions to support their health, independence, and autonomy. This article addresses the key challenges and issues confronting the elderly and analyzes various IoT technologies and solutions proposed to enhance their lives. Smart home technologies improve the quality of life and enable older adults to live independently in their own homes while their adult children are at work. This article presents a smart home model for the elderly in Kazakhstan, based on their needs, concerns, and financial capabilities. The proposed prototype will be developed using an accessible, open-source intelligent system that includes health monitoring, medication adherence monitoring, alerting family members in case of falls or deteriorating health indicators, and video surveillance. Another advantage of this system is the automation of processes such as automatic lighting control, voice command functionality, home security, and climate control. Preliminary testing of the hardware model shows promising results, with plans for continuous improvement and evaluation as it is deployed. Key criteria for its implementation include affordability, accessibility, and feasibility. Based on Kazakhstan’s unique socio-cultural and economic context, this paper proposes a sophisticated smart home model tailored to the specific needs and financial capabilities of elderly Kazakhs.
Copyright © by EnPress Publisher. All rights reserved.