Improving the competitiveness of tourism destinations is crucial for driving local economies and achieving income growth. In light of this evidence, numerous government departments strive to assess specific factors that impact the competitiveness of tourism destinations, enabling them to issue appropriate new tourism policies that promote more effective forms of tourism business. Therefore, the primary objective of this paper is to investigate how various elements such as tourism resources, tourism support, tourism management, location conditions, and tourism demand influence regional competitiveness in the Northern Bay region of Guangxi Province in China. To accomplish this goal, an online survey was conducted to collect data from 420 visitors who had experienced North Gulf Tourism; yielding an impressive response rate of 95 percent. The findings reveal that all aforementioned factors—namely: Tourism resources, tourism support, tourism management, location conditions and tourist demand—significantly impact destination competitiveness. Notably though, it was found that among these factors influencing destination competitiveness; it is primarily determined by effective local-level management (β = 0.345). Following closely behind are tourist demand (β = 0.133) as the second most influential factor affecting destination competitiveness; followed by location conditions (β = 0.116) ranking third; then comes tourist support (β = 0.03) as fourth in line impacting destination competitiveness; finally with least impact being exerted by available tourist resources (β = 0.016). Consequently, highlighting that regional competitiveness within Guangxi’s Northern Bay area predominantly hinges on efficient local-level management practices thus strongly recommending relevant authorities formulate novel work policies aimed at enhancing levels of local-level competitive advantage within the realm of regional touristic offerings.
A logistics service company in Batam faces challenges related to warehouse load fulfillment and sorting inaccuracies. This study aims to identify proposed efficiency improvements to the goods distribution system using the cross-docking method. The research method chosen is cross-docking, a technique that eliminates the storage process in the warehouse, thus saving time and cost. The research findings show significant benefits, especially in achieving zero inventory efficiency. Data processing and discussion revealed that efficiencies were apparent by increasing the sorting tables from 1 to 6, with an output of 90,000 kg during aircraft loading and unloading (compared to approximately 77,000 kilograms). This efficiency arises from the larger output of the sorting tables compared to the input, eliminating the need for warehousing and adding ten trucks. As a result, the shipment can be completed in one trip, with no goods stored in the warehouse. The analysis shows that implementing cross-docking in the company increases efficiency in distributing goods to forwarding partners.
In the era of digital disruption, the imperative development of broadband services is evident. The emergence of 5G technology represents the latest stride in commercial broadband, offering data speeds poised to drive significant societal advancement. The midst of responding to this transformative phenomenon. This pursuit unveils a landscape replete with opportunities and challenges, particularly regarding how 5G’s potential benefits can drive the government towards equitable distribution, ensuring accessibility for all. Simultaneously, there exists a legal hurdle to ensure this vision’s fruition. From a legal perspective, perceived as infrastructure for transformation, the law must seamlessly adapt to and promptly address technological progress. Utilizing normative juridical methods and analytical techniques via literature review, this research endeavors to outline the advantages of 5G and scrutinize Indonesia’s latest telecommunications regulations and policies, alongside corresponding investments. The study ultimately aims to provide a juridical analysis of 5G implementation within Indonesia’s legal framework.
This study determines the efficiency and productivity of Mexico’s urban and rural municipalities in generating economic welfare between 1990 and 2020. It establishes the incidence of context and space on efficiency, using Data Envelopment Analysis, the Malmquist-Luenberger Metafrontier Productivity Index, and Nonparametric Regression. The results indicate that 4 of the 2456 municipalities analyzed were efficient, that productivity increased, and that context and space influenced efficiency. This highlights the need for policies that optimize resource utilization, enhance investment in education, stimulate local business development, encourage inter-municipal cooperation, reduce rural-urban disparities, and promote sustainability.
This study examines the economic feasibility of the environment-friendly farmland use policy to improve water quality. Conventional highland farming, polluting the Han River basin in South Korea, can be converted into environment-friendly farming through land acquisition or application of pesticide-free or organic farming practices. We estimate the welfare measures of improvement in water quality and the costs of policy implementation for economic analysis. To estimate the economic benefit of improvement in water quality experienced by the residents residing in mid-and-downstream areas of the Han River, the choice experiment was employed with a pivot-style experimental design approach. In the empirical analysis, we converted the household perception for water quality grades into scientific water quality measures using Water Quality Standard to estimate the value of changes in water quality. To analyze the costs required to convert conventional highland farmlands into environment-friendly farmlands, we estimated the relevant cost of land acquisition and the subsidy necessary for farm income loss for organic agricultural practice. We find that the agri-environmental policy is economically viable, which suggests that converting conventional highland farming into environment-friendly farming would make the improvement in water quality visible.
The financial services industry is experiencing a swift adoption of artificial intelligence (AI) and machine learning for a variety of applications. These technologies can be employed by both public and private sector entities to ensure adherence to regulatory requirements, monitor activities, evaluate data accuracy, and identify instances of fraudulent behavior. The utilization of artificial intelligence (AI) and machine learning (ML) has the potential to provide novel and unforeseen manifestations of interconnectivity within financial markets and institutions. This can be represented by the adoption of previously disparate data sources by diverse institutions. The researchers employed convenience sampling as the sampling method. The form was filled out over the period spanning from July 2023 to February 2024, and it was designed to be both anonymous and accessible through online and offline platforms. To assess the reliability and validity of the measurement scales and evaluate the structural model, we employed Partial Least Squares (PLS) for model validation. Specifically, we have used the software package Smart-PLS 3 with a bootstrapping of 5000 samples to estimate the significance of the parameters. The results indicate a positive and direct connection between artificial intelligence (AI) and either financial services or financial institutions. On the contrary, machine learning (ML) exhibits a strong and positive association among financial services and financial institutions. Similarly, there exists a positive and direct connection between AI and investors, as well as between ML and investors.
Copyright © by EnPress Publisher. All rights reserved.