The construction of researcher profiles is crucial for modern research management and talent assessment. Given the decentralized nature of researcher information and evaluation challenges, we propose a profile system for Chinese researchers based on unsupervised machine learning and algorithms. This system builds comprehensive profiles based on researchers’ basic and behavior information dimensions. It employs Selenium and Web Crawler for real-time data retrieval from academic platforms, utilizes TF-IDF and BERT for expertise recognition, DTM for academic dynamics, and K-means clustering for profiling. The experimental results demonstrate that these methods are capable of more accurately mining the academic expertise of researchers and performing domain clustering scoring, thereby providing a scientific basis for the selection and academic evaluation of research talents. This interactive analysis system aims to provide an intuitive platform for profile construction and analysis.
This study aimed to determine the socio-economic poverty status of those living in rural areas using data surveys obtained from household expenditure and income. Machine learning-based classification and clustering models were proven to provide an overview of efforts to determine similarities in poverty characteristics. Efforts to address poverty classification and clustering typically involve comprehensive strategies that aim to improve socio-economic conditions in the affected areas. This research focuses on the combined application of machine learning classification and clustering techniques to analyze poverty. It aims to investigate whether the integration of classification and clustering algorithms can enhance the accuracy of poverty analysis by identifying distinct poverty classes or clusters based on multidimensional indicators. The results showed the superiority of machine learning in mapping poverty in rural areas; therefore, it can be adopted in the private sector and government domains. It is important to have access to relevant and reliable data to apply these machine learning techniques effectively. Data sources may include household surveys, census data, administrative records, satellite imagery, and other socioeconomic indicators. Machine learning classification and clustering analyses are used as a decision support tool to gain an understanding of poverty data from each village. These strategies are also used to describe the profile of poverty clusters in the community in terms of significant socio-economic indicators present in the data. Village clusters based on an analysis of existing poverty indicators are grouped into high, moderate, and low poverty levels. Machine learning can be a valuable tool for analyzing and understanding poverty by classifying individuals or households into different poverty categories and identifying patterns and clusters of poverty. These insights can inform targeted interventions, policy decisions, and resource allocation for poverty reduction programs.
Credit policies for clean and renewable energy businesses play a crucial role in supporting carbon neutrality efforts to combat climate change. Clustering the credit capacity of these companies to prioritize lending is essential given the limited capital available. Support Vector Machine (SVM) and Artificial Neural Network (ANN) are two robust machine learning algorithms for addressing complex clustering problems. Additionally, hyperparameter selection within these models is effectively enhanced through the support of a robust heuristic optimization algorithm, Particle Swarm Optimization (PSO). To leverage the strength of these advanced machine learning techniques, this paper aims to develop SVM and ANN models, optimized with the PSO, for the clustering problem of green credit capacity in the renewable energy industry. The results show low Mean Square Error (MSE) values for both models, indicating high clustering accuracy. The credit capabilities of wind energy, clean fuel, and biomass pellet companies are illustrated in quadrant charts, providing stakeholders with a clear view to adjust their credit strategies. This helps ensure the efficient operation of banking green credit policies.
Regional differentiation in the Russian Federation is considered to be high in terms of gross regional product (GRP) per capita level, growth rate, and other indicators. Inefficient use of region-specific spaces entails redistribution processes in order to maximize positive agglomeration effects throughout the country. These encompass economic restructuring based on production value-added chain extension and expanding inter-regional collaborative linkages. Besides, it is vital to assess the opportunities of individual Russian territories for participation therein. The research goal is to develop a scientifically based methodology to determine promising sectoral composition of the regional economies and that of spatial interactions. Such methodology would consider the feasibility of combining “smart” industrial specializations, regional resource potential, prevailing contradictions in the economic, innovative, and technological development of the country’s internal space. The proposed methodological approach opens the way to exploit the existing regional economic potential to the full, firstly, via establishing sectoral priorities of the region regarding the regulatory factors for the territorial capital to have a major effect on the increased potential GRP level; secondly, through benchmarking performance of the available development reserves within leading regions from homogeneous groups having similar characteristics and factor potentials; thirdly, via developing inter-regional integration prospects in terms of regional potential redistribution to ensure growth in potential gross domestic product. An extensive analytical and applied investigation of the proposed methodological approach was carried out from 2014 to 2020. Diversified estimates were obtained for a wide range of indicators due to evidences from 85 Russian regions and 13 types of economic activity. Such an integrated approach allows revealing actual imbalances and barriers that impede regional development, ensures the efficient use of production factors, and enables to trace ways to implement transformation policies and design effective regulatory mechanisms. The results provide arguments in favor of strengthening inter-regional connectivity and supporting inter-regional cooperation. This insight not only contributes to the academic discourse on complex development of a territory but also holds practical implications for policymakers and regional planners aimed at ensuring comprehensiveness and robustness of the evaluation supporting the decision-making process.
This study investigates the public’s perceptions of digital innovations in pharmacy, with a focus on health informatics and medication management. Despite the rapid development of these technologies, a comprehensive understanding of how various demographics perceive and interact with them is lacking hence, this research aims to bridge this gap by offering insights into public attitudes and the factors influencing the adoption of digital tools in pharmacy practice, as KSA population and healthcare professionals after Covid-19 has observed the significant potential of digital health. A cross-sectional survey involving 1132 participants was conducted, employing SPSS for data analysis to ensure precise and reliable results. The findings indicate general optimism about the potential of digital innovations to enhance healthcare outcomes but concerns about data privacy and usability significantly affect user acceptance. The researchers recommended tailored educational programs and user-centered design to facilitate the adoption of digital pharmacy innovations. Key contributions include the identification of ‘Ease of Use’ and ‘Data Security and Privacy’ as predominant factors in the adoption of digital health tools.
Clustering technics, like k-means and its extended version, fuzzy c-means clustering (FCM) are useful tools for identifying typical behaviours based on various attitudes and responses to well-formulated questionnaires, such as among forensic populations. As more or less standard questionnaires for analyzing aggressive attitudes do exist in the literature, the application of these clustering methods seems to be rather straightforward. Especially, fuzzy clustering may lead to new recognitions, as human behaviour and communication are full of uncertainties, which often do not have a probabilistic nature. In this paper, the cluster analysis of a closed forensic (inmate) population will be presented. The goal of this study was by applying fuzzy c-means clustering to facilitate the wider possibilities of analysis of aggressive behaviour which is treated as a heterogeneous construct resulting in two main phenotypes, premeditated and impulsive aggression. Understanding motives of aggression helps reconstruct possible events, sequences of events and scenarios related to a certain crime, and ultimately, to prevent further crimes from happening.
Copyright © by EnPress Publisher. All rights reserved.