The need for strategic alignment within HR management increased managers’ concern about individual behavior and how this behavior was related to the achievement of goals. In public management, effectively managing employees’ performance has been necessary since Weber’s bureaucratic administration. The individual performance appraisal is the right tool to assess employees’ competencies. Thus, we proposed the following research question: Which factors, as pointed out by theory, have the most significant influence on the individual performance appraisal process? The quantitative method was applied to answer this question, developing and testing a scale via EFA and a hypothetical model via SEM-CB. The results indicated a scale with 25 items able to access the main points of the IPA process and a hypothetical model with 7 constructs that indicate the influence on employee engagement. The main finding is the significant influence of feedback on the whole process. The main theoretical contribution was the construction of the MIPAS scale, and the practical contribution was to identify the points where managers should focus on improving the IPA process with their subordinates.
Soil erosion is characterized by the wearing away or loss of the uppermost layer of soil, driven by water, wind, and human activities. This process constitutes a significant environmental issue, with adverse effects on water quality, soil health, and the overall stability of ecosystems across the globe. This study focuses on the Anuppur district of Madhya Pradesh, India, employing the Revised Universal Soil Loss Equation (RUSLE) integrated with Geographic Information System (GIS) tools to estimate and spatially analyze soil erosion and fertility risk. The various factors of the model, like rainfall erosivity (R), soil erodibility (K), slope length and steepness (LS), conservation practices (P), and cover management factor (C), have been computed to measure annual soil loss in the district. Each factor was derived using geospatial datasets, including rainfall records, soil characteristics, a Digital Elevation Model (DEM), land use/land cover (LULC) data, and information on conservation practices. GIS methods are used to map the geographical variation of soil erosion, providing important information on the area's most susceptible to erosion. The outcome of the study reveals that 3371.23 km2, which constitutes 91% of the district's total area, is identified as having mild soil erosion; in contrast, 154 km2, or 4%, is classified as moderate soil erosion, while 92 km2, representing 2.5%, falls under the high soil erosion category. Additionally, 50 km2, or 1.35%, is categorized as very high soil erosion and around 30 km2 of the study area is classified as experiencing severe soil erosion. The analysis further discovers that the annual soil loss in the district varies between 0 and 151 tons per hectare per year. This study indicates that most of the district is classified under low soil erosion; only a tiny fraction of the area is categorized as experiencing high and very high soil erosion. The study provides significant insights into soil erosion for policymakers and human society to bring their attention to the need for sustainable soil conservation practices in the undulating terrain/topography and agriculturally dominated district of Anuppur.
This study evaluated the development and validation of an integrated operational model for the Underground Logistics System (ULS) in South Korea’s metropolitan area, aiming to address challenges in urban logistics and freight transportation by highlighting the potential of innovative logistics systems that utilize underground spaces. This study used conceptual modeling to define the core concepts of ULS and explored the system architecture, including cargo handling, transportation, operations and control systems, as well as the roles of cargo crews and train drivers. The ULS operational scenarios were verified through model simulation, incorporating both logical and temporal analyses. The simulation outcomes affirm the model’s logical coherence and precision, emphasizing ULS’s pivotal role in boosting logistics efficiency. Thus, ULS systems in Korea offer prospects for elevating national competitiveness and spurring urban growth, underscoring the merits of ULS in navigating contemporary urban challenges and championing sustainability.
Indonesia ranks as the second-largest source of plastic garbage in marine areas, behind China. This is a critical problem that emphasises the need for synergistic endeavors to safeguard the long-term viability of marine ecosystems. The objective of this work is to examine the implementation of the Penta Helix model in the management of marine plastic trash. For this purpose, a Systematic Literature Review (SLR) was carried out, utilizing scholarly papers sourced from the Science Direct, Scopus, and Web of Science databases. The analysis centred on evaluating the Penta Helix model as a cooperative framework for tackling plastic waste management in the marine environments of Indonesia and China. The results suggest that the Penta Helix methodology successfully enables the amalgamation of many interests and resources, making a valuable contribution to the mitigation of plastic pollution in the waters of both nations. In order to advance a more comprehensive and sustainable approach to plastic waste management, this multidisciplinary plan brings together stakeholders from government, academia, business, civil society, and the media. Under this framework, the government is responsible for formulating laws, guidelines, and programs to decrease the use of disposable plastics and improve waste management infrastructure, all while guaranteeing adherence to environmental constraints. Simultaneously, the industrial and academic sectors are responsible for creating sustainable technology and pioneering business strategies, while civil society, in collaboration with the media, has a crucial role in increasing public consciousness regarding the destructive effects of plastic trash. This comprehensive strategy emphasizes the need of synergistic endeavors in tackling the intricate issues of marine plastic contamination.
Brain tumors are a primary factor causing cancer-related deaths globally, and their classification remains a significant research challenge due to the variability in tumor intensity, size, and shape, as well as the similar appearances of different tumor types. Accurate differentiation is further complicated by these factors, making diagnosis difficult even with advanced imaging techniques such as magnetic resonance imaging (MRI). Recent techniques in artificial intelligence (AI), in particular deep learning (DL), have improved the speed and accuracy of medical image analysis, but they still face challenges like overfitting and the need for large annotated datasets. This study addresses these challenges by presenting two approaches for brain tumor classification using MRI images. The first approach involves fine-tuning transfer learning cutting-edge models, including SEResNet, ConvNeXtBase, and ResNet101V2, with global average pooling 2D and dropout layers to minimize overfitting and reduce the need for extensive preprocessing. The second approach leverages the Vision Transformer (ViT), optimized with the AdamW optimizer and extensive data augmentation. Experiments on the BT-Large-4C dataset demonstrate that SEResNet achieves the highest accuracy of 97.96%, surpassing ViT’s 95.4%. These results suggest that fine-tuning and transfer learning models are more effective at addressing the challenges of overfitting and dataset limitations, ultimately outperforming the Vision Transformer and existing state-of-the-art techniques in brain tumor classification.
The efficiencies and performance of gas turbine cycles are highly dependent on parameters such as the turbine inlet temperature (TIT), compressor inlet temperature (T1), and pressure ratio (Rc). This study analyzed the effects of these parameters on the energy efficiency, exergy efficiency, and specific fuel consumption (SFC) of a simple gas turbine cycle. The analysis found that increasing the TIT leads to higher efficiencies and lower SFC, while increasing the To or Rc results in lower efficiencies and higher SFC. For a TIT of 1400 ℃, T1 of 20 ℃, and Rc of 8, the energy and exergy efficiencies were 32.75% and 30.9%, respectively, with an SFC of 187.9 g/kWh. However, for a TIT of 900 ℃, T1 of 30 ℃, and Rc of 30, the energy and exergy efficiencies dropped to 13.18% and 12.44%, respectively, while the SFC increased to 570.3 g/kWh. The results show that there are optimal combinations of TIT, To, and Rc that maximize performance for a given application. Designers must consider trade-offs between efficiency, emissions, cost, and other factors to optimize gas turbine cycles. Overall, this study provides data and insights to improve the design and operation of simple gas turbine cycles.
Copyright © by EnPress Publisher. All rights reserved.