ZrO2 thin film samples were produced by the sol-gel dip coating method. Four different absorbed dose levels (such as ~ 0.4, 0.7, 1.2 and 2.7 Gray-Gy) were applied to ZrO2 thin films. Hence, the absorbed dose of ZrO2 thin film was examined as physical dose quantity representing the mean energy imparted to the thin film per unit mass by gamma radiation. Modification of the grain size was performed sensitively by the application of the absorbed dose to the ZrO2 thin film. Therefore the grain size reached from ~50 nm to 87 nm at the irradiated ZrO2 thin film. The relationship of the grain size, the contact angle, and the refractive index of the irradiated ZrO2 thin film was investigated as being an important technical concern. The irradiation process was performed in a hot cell by using a certified solid gamma ray source with 0.018021 Ci as an alternative technique to minimize the utilization of extra toxicological chemical solution. Antireflection and hydrophilic properties of the irradiated ZrO2 thin film were slightly improved by the modification of the grain size. The details on the optical and structural properties of the ZrO2 thin film were examined to obtain the optimum high refractive index, self-cleaning and anti-reflective properties.
We have studied the effect of the series resistance on the heating of the cathode, which is based on carbon nanotubes and serves to realize the field emission of electrons into the vacuum. The experiment was performed with the single multi-walled carbon nanotube (MCNT) that was separated from the array grown by CVD method with thin-film Ni-Ti catalyst (nickel 4 nm/Ti 10 nm). The heating of the cathode leads to the appearance of a current of the thermionic emission. The experimental voltage current characteristic exhibited the negative resistance region caused by thermal field emission. This current increases strongly with increasing voltage and contributes to the degradation of the cold emitter. The calculation of the temperature of the end of the cathode is made taking into account the effect of the phenomenon that warms up and cools the cathode. We have developed a method for processing of the emission volt-ampere characteristics of a cathode, which relies on a numerical calculation of the field emission current and the comparison of these calculations with experiments. The model of the volt-ampere characteristic takes into account the CNT’s geometry, properties, its contact with the catalyst, heating and simultaneous implementation of the thermionic and field emission. The calculation made it possible to determine a number of important parameters, including the voltage and current of the beginning of thermionic emission, the temperature distribution along the cathode and the resistance of the nanotube. The phenomenon of thermionic emission from CNTs was investigated experimentally and theoretically. The conditions of this type emission occurrence were defined. The results of the study could form the basis of theory of CNT emitter’s degradation.
Metal organic framework is a class of hybrid network of supramolecular solid materials comprised of a large number of inorganic and organic linkers all bounded to metal ions in a well-organized fashion. This type of compounds possess a greater surface area with an advantage of changing pore sizes, diversified and beautiful structure which withdrew an intense interest in this field. In the present review articles, the structural aspects, classification, methods of synthesis, various factors affecting the synthesis and stability, properties and applications have been discussed. Recent advances in the field and new directions to explore the future scope and applications of MOFs have been incorporated in this article to provide current status of the field.
Afforestation is a main tool for preventing desertification and soil erosion in arid and semiarid regions of Iran. Large-scale afforestation, however, has poorly understood consequences for the future ecosystems in the term of ecosystems protection. The objective of the present study is to identify changes in soil properties following different intervals of planting of Ailanthus altissima (tree of heaven) in semiarid afforestation of Iran (Chitgar Forest Park, Tehran). For this purpose, sand, silt and clay ratios, bulk density, soil moisture, pH, electrical conductivity, phosphorus, potassium, magnesium, calcium, sodium, total soil N, and total carbon was measured. Our study highlighted the potential of the invasive trees by A. altissima, to alter soil properties along chronosequence. Almost all soil quality attributes showed a declining trend with stand age. A continuous decline in soil quality indicated that the present land management may not be sustainable. Therefore, an improved management practice is imperative to sustain soil quality and maintain long-term productivity of plantation forests. Thinning activity will be required to reduce the number of trees competing for the same nutrients especially in a older stand to protect forest soils.
Benzoxazine resin, a new type of phenolic resin, has many advantages, such as a strong molecular design, no small molecular release in the curing process, excellent thermal stability and mechanical properties, and a high residual carbon ratio. Thus, it is important for electronic communication industry matrix material. To meet the needs of high-frequency and high-speed communication technology for low-dielectric polymer resin, the low-dielectric modification of benzoxazine resin is of great significance to the high frequency and high-speed propagation of the signal, which attracts a wide range of materials researchers’ attention. In this paper, we review a series of studies on the low dielectric modification of benzoxazine resin in recent years, including the synthesis of new monomers, inorganic - organic hybridization, copolymerization with other resins, and low molecular weight benzoxazine resin research trends.
Bagasse fiber from sugarcane waste is used with epoxy resin to make natural composites. The raw fibers are treated chemically to improve compatibility and adherence with the epoxy polymer. It’s anticipated that epoxy resin matrix composites reinforced with bagasse particles would work as a trustworthy replacement for conventional materials utilized in the building and automobile sectors. The amount and distribution of reinforcing particles inside the matrix are two factors that impact the composite’s strength. Furthermore, the precise proportion of reinforcing elements—roughly 20–30 weight percent—into the matrix plays a critical role in providing a noticeable boost in improving the properties of the composites. This research investigates the impact of reinforcing alkali-treated bagasse and untreated bagasse powder into an epoxy matrix on aspects of mechanical and morphological characteristics. The hand layup technique is used to create alkali-treated bagasse and untreated bagasse powder-reinforced epoxy composites. Composites are designed with six levels of reinforcement weight percentages (5%, 10%, 15%, 20%, 25%, and 30%). Microstructural analysis was performed using SEM and optical microscopes to assess the cohesion and dispersion of the reinforcing particles throughout the hybrid composites’ matrix phase. With reinforcement loading up to 20 wt%, the tensile strength, impact strength, and toughness of epoxy-alkali-treated bagasse and untreated bagasse powder-reinforced composites increased. In contrast, treated bagasse epoxy composites were superior to untreated epoxy composites in terms of efficacy. The results indicate that 20 wt% alkali bagasse powder provides better mechanical properties than other combinations.
Copyright © by EnPress Publisher. All rights reserved.