The paper deals with the issues of the influence of forest cover on the average annual runoff of rivers in the Pripyat River basin. In the study area, under the influence of solar radiation, the temperature of the air and the soil surface increases, evaporation from the water surface also increases, and the moisture content of the upper layers of the soil decreases. In general, with an increase in forest cover, the annual layer of the runoff of the studied rivers increases, as well as with an increase in the amount of precipitation (in contrast to the runoff of short-term floods). However, with a forest cover of more than 20%–30% and a relatively small amount of precipitation, the runoff decreases, which is associated with the retention of part of the precipitation by the forest cover. With a large amount of precipitation and low forest cover, the runoff also decreases, which is probably due to the loss of precipitation water for evaporation, etc. The conducted studies show that, just as the forest affects water resources, the flow of moisture to watersheds also affects the state of forest systems. Moreover, this interaction is expressed by evaporation from forests. Under influence of change of a climate growth of evaporation is observed.
Infrared thermal imaging technology is another new branch for medical imaging after traditional medical imaging technologies such as X-ray, ultrasound and magnetic resonance (MRI). It has the advantages of noninvasive, nondestructive, simple and fast. Its application can radiate multiple clinical departments. This paper mainly expounds the principle, influencing factors of medical infrared thermography and its application in radiation protection and other medical fields.
The optimized methodology and results of the new characterization in terms of dose and image quality of the X-ray system used in the main pediatric hemodynamics service in Chile are presented. In addition, scattered dose rate values at the operator’s eye level are reported for all acquisition modes available in different thicknesses of absorbent media and angiography. The characterization was performed according to the European DIMOND and SENTINEL protocols adapted to pediatric procedures. The air kerma at the entrance surface (ESAK) was measured and the image quality parameters signal-to-noise ratio (SNR) and a figure of merit (FOM) were calculated. The scattered dose rate was measured in personal dose equivalent units. The ESAK for fluoroscopic modes ranged from 0.2 to 35.6 μGy/image when passing from 4 to 20 cm of polymethyl methacrylate (PMMA). For the cine mode, these values ranged from 2.8 to 160.1 μGy/image. The values of the image quality parameters showed a correct system configuration, although abnormal values were observed in the medium fluoroscopic mode. As for the scattered dose rate at the level of the cardiologist’s eyes, the highest value is PMMA with a thickness of 20 cm, where the cine mode reached 9.41 mSv·h-1. The differences found from previous evaluations can be explained by the deterioration of the system and the change of one of the X-ray tubes.
This study was conducted to study the growth process of silkworm eggs in a silkworm research center under the condition of no electromagnetic radiation and strong electromagnetic radiation. In the course of the study, the silkworm seeds were randomly divided into two groups. All the mulberry leaves were used to observe and record the time of molting dormancy growth and the related physiological parameters were recorded and recorded. The effect of mobile phone radiation on the growth process of silkworm larvae was analyzed. Based on the experimental results, the microcosmic mechanism of the effects of mobile radiation on organisms and adolescents was analyzed and the preventive measures were put forward. First, for young people as much as possible to reduce the frequency of mobile phone use, thereby reducing the adverse effects of electromagnetic radiation on the growth and development of young people, to develop good habits. Second, the social and electromagnetic wave management departments attach importance to strengthen the rational use of electromagnetic waves.
In Costa Rica, there is no explicit recommendation from the competent authorities for the use of a specific phantom, so experts must explore what suppliers offer, among which the Normi Mam Digital phantom from PTW stands out. This article presents the results of the dosimetry and image quality control applied to the Normi Mam Digital phantom to validate it as equipment that complies with the recommendations of the Human Health Series No. 17. The results obtained were satisfactory, proving that the equipment complies with the tolerances recommended by international health bodies.
Copyright © by EnPress Publisher. All rights reserved.