At present, states and entire regions that possess significant reserves of sought-after minerals have great potential to maintain and even improve their socio-economic position in the foreseeable future. Since the beginning of 2000, the increase in mining volumes of minerals has been more than 50%; however, more than half of all extracted raw materials fall to only five leading countries: China, the USA, the Russian Federation, Australia, and India. This article presents the results of the analysis of the global structure of mineral production by type and geographic region. The article provides an in-depth analysis of the world’s leading mining companies, identifying the key players in the industry. A comprehensive overview of each company’s performance, including key financial indicators and production statistics, is presented. The main environmental risks as a result of the continued increase in the global scale of mining have been identified. The prospects for the development of the mining sector are shown. The results of the study can be used by the scientific community as an information source.
Some developmental projects are created by people-private partnerships (PPP), particularly where recovery is acquirable by levying the users. Such PPPs are successful for construction of roads, bridges, running toilet facilities and conveyance facility in mode of use and pay. Likewise, public-scientist partnerships (PSPs) will be successful, where monitored impacts can be used to derive benefit. But such example cases are not so popular in utilizing new research results and derive benefits from natural resources and enhance productivity. There is a demand for similar partnership projects in research area. In this study modality of the PSP to create boost engine for natural resource conservation and bring economic prosperity is established. A novel PSP launch was synthesized on useful food crop viz. finger millet (Elusiane corcona (l)), which has been known since long past, and now is regaining popularity. It was possible to enhance additional annual production of 5.755 million tonnes of finger millet grain, equivalent to additional income of Rs 11,510 crores. Against this the scientist partnership share was 0.49x million tonnes grain and economic equivalency of Rs 992 crores, which was just 7–8%, with same level of input in agriculture. Additional benefits were sustainability of production and resources consecration, reduction of greenhouse gas emission (GHGs), particularly nitrous oxide (N2O), largely emanating from agriculture and responsible for depletion of ozone layer. The finger millet stiff stem will be useable for production of ply-board filling material that will be innovative building material for housing and infrastructure developments and making furniture.
Physical sampling of water on site is necessary for various applications like drinking water quality checking in lakes and checking for contaminants in freshwater systems. The use of water surface vehicles is a promising technology for monitoring and sampling water bodies, and they offer several advantages over traditional monitoring methods. This project involved designing and integrating a drone controller, water collection sampling contraption unit, and a surveillance camera system into a water surface vehicle (WSV). The drone controller unit is used to operate the boat from the starting location until the location of interest and then back to the starting location. The drone controller has an autopilot system where the operator can set a course and be able to travel following the path set, whereas the WSV will fight the external forces to keep itself in the right position. The water collection sampling unit is mounted onto WSV so when it travels to the location, it can start collecting and holding water samples until it returns to the start location. The field of view (FOV) surveillance camera helps the operator to observe the surrounding location during the operation. Experiments were conducted to determine the operational capabilities of the robot boat at the Ayer Keroh Lake. The water collection sampling contraption unit collected samples from 44 targeted areas of the lake. The comprehensive examination of 14 different water quality parameters were tested from the collected water samples provides insights into the factors influencing the pollution and observation of water bodies. The successful design and development of a water surface surveillance and pollution tracking vehicle marks the key achievements of this study. The developed collection and surveillance unit holds the potential for further refinement and integration onto various other platforms. They are offering valuable assistance in water body management, coastal surveillance, and pollution tracking. This system opens up new possibilities for comprehensive water body assessments, contributing to the advancement of sustainable and efficient water testing. Through careful sampling efforts, a thorough overview of the substances presents in the water collected from Ayer Keroh Lake has been compiled. This in-depth analysis provides important insights into the lake’s current condition, offering valuable information about its ecological health.
This paper explores the distribution of educational resources from the perspective of public service equalization in China, with a particular focus on government responsibility and fiscal input. Initially, the paper reviews the theoretical foundations and empirical studies concerning the distribution of educational resources, analyzing the role of government in educational equity and the impact of fiscal expenditure. By employing quantitative analysis methods, this study utilizes data on provincial education expenditures over several years to examine the relationship between government fiscal input and the equalization of educational resources. Empirical results indicate that increasing educational fiscal input and optimizing the allocation mechanism significantly enhance the level of equalization in educational resources. Furthermore, through case analyses of several local governments, effective policy recommendations are proposed to promote the fair distribution and optimization of educational resources. Lastly, the paper discusses potential obstacles in policy implementation and suggests corresponding strategies.
This research explores the necessity and the effect of job resources for undergraduates’ career satisfaction during work experience in an apprenticeship program. Additionally, we examine the extent to which a supportive environment enhances apprentice career satisfaction by providing access to valuable learning experiences. We propose PLS equation modelling with a sample of 81 students who completed a dual apprenticeship degree in Business Administration and Management at Spanish University. The study finds that all three workplace job resources are necessary for career satisfaction among apprentices. Learning opportunities and social relations have significant effects, while job control contributes only marginally. It highlights that learning opportunities enhance social relations, emphasizing the importance of feedback. The study extends job resource research to university level apprenticeships, showing that without these resources, apprentices lack career satisfaction. It highlights that learning opportunities are crucial for satisfaction through social relations and offers guidance for designing effective workplace training programs.
Copyright © by EnPress Publisher. All rights reserved.