The PPP scholarly work has effectively explored the material values attached to PPPs such as efficiency of services, value for money and productivity, but little attention has been paid to procedural public values. This paper aims to address this gap by exploring how Enfidha Airport in Tunisia failed to achieve both financial and procedural values that were expected from delivering the airport via the PPP route, and what coping strategies the public and private sectors deployed to ameliorate any resultant value conflicts. Based on the analysis of Enfidha Airport, it is argued that PPP projects are likely to fail to deliver financial and procedural values when the broader institutional context is not supportive of PPP arrangements, and when political and security risks are not adequately counted for during the bidding process.
As cities continue to face the increasing demands of urban transportation and the need for sustainable mobility solutions, the integration of intelligent transportation systems (ITS) with smart city infrastructure emerges as a promising approach. This paper presents a novel framework for integrating ITS with smart city infrastructure, aiming to address the challenges of urban transportation and promote sustainable mobility. The framework is developed through a comprehensive literature review, case studies, and stakeholder interviews, providing significant insights into the integration process. Our research outlines the key components of smart city infrastructure that can be integrated with ITS, highlights the benefits of integration, and identifies the challenges and barriers that need to be addressed. Additionally, we propose and apply evaluation methods to assess the effectiveness of ITS integration with smart city infrastructure. The results demonstrate the novelty and significance of this framework, as it significantly reduces traffic congestion, improves air quality, and enhances citizen satisfaction. This paper contributes to the existing literature by providing a comprehensive approach to integrating ITS with smart city infrastructure, offering a transformative solution for urban transportation challenges.
In this study, nano-scale microstructural evolution in 6061-T6 alloy after laser shock processing (LSP) was studied. 6061-T6 alloy plate was subjected to multiple LSP. The LSP treated area was characterized by X-ray diffraction and the microstructure of the samples was analyzed by transmission electron microscopy. Focused Ion Beam (FIB) tools were used to prepare TEM samples in precise areas. It was found that even though aluminum had high stacking fault energy, LSP yielded to formation of ultrafine grains and deformation faults such as dislocation cells, stacking faults. The stacking fault probability (PSF) was obtained in LSP-treated alloy using X-Ray diffraction. Deformation induced stacking faults lead to the peak position shifts, broadening and asymmetry of diffraction. XRD analysis and TEM observations revealed significant densities of stacking faults in LSP-treated 6061-T6 alloy. And mechanical properties of LSP-treated alloy were also determined to understand the hardening behavior with high concentration of structural defects.
In China, ideological and political education is currently the hot direction of teaching reform in various colleges and universities, yet the development of appropriate teaching evaluation methods needs to catch up. This study addresses the pressing need for a preliminary investigation into the complex relationships among ideological and political education, the students’ learning satisfaction and teaching quality. This research examines the influence of teaching and ideological and political education quality on students’ satisfactions by designing a set of scales, collecting about 3800 questionnaires. Utilizing Structural Equation Modeling (SEM) and qualitative interviews, this study reveals that the teaching quality directly affects students’ learning satisfaction and ideological and political education. Notably, ideological and political education can also affect students’ learning satisfaction. The findings underscore the importance of including ideological and political education assessments in evaluating courses. This research contributes to the ongoing dialogue on effective teaching evaluation methods in the context of evolving educational practices.
Food security presents a complex challenge that spans multiple sectors and levels, involving diverse stakeholders. Such a challenge necessitates collaborative efforts and the creation of shared value among participants. Through the lens of service-dominant logic (S-D logic), food security can be redefined to achieve a more comprehensive understanding and sheds light on the dynamic interplay among stakeholders, enabling the realization of potential value co-creation. As a theoretical contribution, this research addresses the gap in explaining stakeholder interactions. This aspect is crucial for fostering collaboration, and the study accomplishes this by leveraging Social Network Analysis to identify clusters and assign them roles as sub-orchestrators to support the National Food Agency as the main orchestrator who responsible to implement co-creation management strategy (involvement, curation, and empowerment). The study also proposes stakeholder roles in the context of food security: regulator, operator, dominator, niche player, and supporter. Moreover, the practical significance of this research is highly relevant to the early stages of the National Food Agency (NFA) since its establishment in 2021. As the NFA seeks optimal structure, networks, and resources to enhance Indonesia’s existing food system, the study offers valuable insights. This comprehensive study highlights key issues in developing food security in Indonesia and provides recommendations for overcoming future challenges.
Introduction: Many detrimental effects on employees’ health and wellbeing might result from inadequate illumination in the workplace. Headaches and trouble focusing can result from eye strain brought on by inadequate illumination. The purpose of this study was to simulate and optimize workplace illumination in the ceramic industry. Materials and methods: A common Luxmeter ST-1300 was used to measure the illumination in seven workplaces at a height of 100 cm above the floor. DIALux evo version 7.1 software was used to simulate the illumination of workplaces. To optimize the illumination conditions, a numerical experiment design consisting of 16 scenarios was used for each of the workplaces. Four factors were considered for each scenario: luminaire height, number of luminaires, luminous flux, and light loss factor. The Design-Expert program version 13.0.5.0 was applied for developing the scenarios. Finally, by developing quadratic models for each workplace, the optimization process was implemented. Results: Every workplace had illumination levels that were measured to be between 250 and 300 lux. Instead of using compact fluorescent luminaires, LED technology was recommended to maximize the illumination conditions for the workers. Following optimization, 376 lux of illumination were visible at each workstation in every workspace. For the majority of the workspaces, the simulated illumination was expected to have a desirability degree greater than 0.9. The uniformity and illumination of the workplace were significantly impacted by the two factors of luminaire height and luminaire count. Conclusion: The primary outcomes of this optimization were the environmental, political, and socioeconomic ones, including reduced consumption power, high light flux, and environmental compatibility. Nonetheless, the optimization technique applied in this work can be applied to the design of similar situations, such as residential infrastructure.
Copyright © by EnPress Publisher. All rights reserved.