Eco-friendly and greener barrier materials are required to replace the synthetic packaging materials as they produce a threat to environment. These can be fabricated by natural polymers such as cellulose nanofiber (CNF). The sustainability of CNF was so amazing due to its potential for circular economy and provides alternative platform for synthetic plastics. The challenging task to fabricate CNF films still existed and also current methods have various limitations. CNF films have good oxygen permeability and the value was lower than synthetic plastics. However, CNF films have poor water vapour permeability and higher than that of synthetic plastics. The fabrication method is one of strong parameters to impact on the water permeability of CNF films. The deposition of CNF suspension on the stainless-steel plate via spraying, is a potential process for fabrication for CNF films acting as barrier material against water vapour. In spraying process, the time required to form CNF films in diameter of 15.9 cm was less than 1 min and it is independent of CNF content in the suspension. The uniqueness of CNF films via the spraying process was their surfaces, such as rough surface exposed to air and smooth surface exposed to stainless steel. Their surfaces were investigated by SEM, AFM and optical profilometry micrographs, confirming that the smooth surface was evaluated notable lower surface roughness. The spray coated surface was smooth and glossy and its impact on the water vapor permeability remains obscure. The spraying process is a flexible process to tailor the basis weight and thickness of CNF films can be adjusted by the spraying of CNF suspension with varying fibre content. The water vapour permeability of CNF films can be tailored via varying density of CNF films. The plot between water vapour transfer rate (WVTR)/water vapour and density of CNF films has been investigated. The WVP of spray coated CNF films varied from 6.99 ± 1.17 × 10−11 to 4.19 ± 1.45 × 10−11 g/m.s.Pa. with the density from 664 Kg/m3 to 1,412.08 Kg/m3. The WVP of CNF films achieved with 2 wt% CNF films (1,120 Kg/m3) was 3.91 × 10−11 g/m.s.Pa. These values were comparable with the WVP of synthetic plastics. Given this correspondence, CNF films via spraying have a good barrier against water vapour. This process is a potential for scale up and commercialization of CNF films as barrier materials.
In Urban development, diversity respect is needed to prioritize and balance the urban development design for sustainable eco-city development. As a result, this research aimed to investigate the causal factor pathways of social network factors influencing sustainable eco-city development in the northeastern region of Thailand through a quantitative research approach. With the aim to survey insightful information, the analysis unit was conducted at the individual level with three hundred and eighty-three (383) samplings in Khon Kaen and Udon Thani provinces, including univariate analysis and multivariate analysis, using path analysis and multiple linear regression. The study results indicated that two pathways of social network factors influencing sustainable eco-city development were indirect influence factors. The indirect influence factor consists of information exchange, benefits exchange in the network, and members’ role in the social network. Additionally, the study revealed that the pathway has influences through social network types and the economic and social dimensions of sustainable cities (R2 = 0.330). Therefore, this study concluded that sustainable eco-city development should be implemented through community networks and economic and social network development for environmental development through social network types.
The proposed scientific article aims to analyze the application of Lean Six Sigma in the food industry. To this end, a detailed methodology has been designed that ranges from the selection of the works to the synthesis and presentation of the results obtained. The methodology is based on rigorous inclusion criteria to ensure the relevance and quality of the selected sources, including books, academic articles, theses, and other relevant documents. Through extensive searches of academic databases and other reliable sources, key works were identified that specifically address the implementation of Lean Six Sigma in the context of food production. Once the relevant papers were collected, a critical analysis was conducted to identify common themes, trends, and key findings. The works were classified according to their main focus, such as process improvement, waste reduction, supply chain optimization and food safety assurance. This categorization allowed the information to be organized in a coherent way and to facilitate the synthesis of the results. The results obtained were presented in a table that included details about each selected work, such as title, author, year of publication, abstract and links to the original source. This structured and rigorous approach provides a clear and comprehensive view of the topic, contributing to the advancement of knowledge in this area and offering practical guidance for practitioners and researchers interested in the application of Lean Six Sigma in the food industry. The literature on Lean Six Sigma in the food industry highlights its importance in improving efficiency, quality, and safety. Key recommendations include gradual implementation, appropriate training, focus on quality, and continuous improvement.
This study investigates the factors influencing student satisfaction at higher education institutions in Pathum Thani Province, Thailand. The research uses structural equation modeling (SEM) to analyze the connections among College Reputation, Student Expectation, Perception Value, and Student Satisfaction based on a sample of 660 students. The results indicate that the student population is diverse, with most students enrolled in the Faculty of Business Administration in their first year. The Pearson’s correlation matrix and structural equation modeling (SEM) findings indicate significant positive correlations between the dimensions, emphasizing the crucial influence of College Reputation on both Student Expectation and Student Satisfaction. The goodness-of-fit indices validate the model’s strength, indicating a significant correspondence between the theoretical components and the observed data. This study enhances the comprehension of how student satisfaction changes in Thai higher education and offers practical suggestions for institutional policies to improve student’s educational experiences and achievements. Higher education institutions may create a more fulfilling and effective learning environment by prioritizing reputation improvement, ensuring student expectations match reality, and providing perceived value to improve education quality and equality for Thailand.
BiVO4 was hydrothermally synthesized under different preparing conditions and characterized by XRD, SEM, Raman spectrum and BET specific surface area. The influence of different pH value and annealing temperature and hydrothermal time on the morphologies and structures of the BiVO4 samples was investigated systematically. It can be found that annealing would eliminate the effects caused by the pH of precursor, heating temperature and heating time, but preparing conditions still influenced the size and specific surface area of samples. Furthermore, the photocatalytic activities of the fabricated BiVO4 were also evaluated by the degradation of methyl blue in aqueous solution under UV and visible light irradiation.
In view of the fact that the convolution neural network segmentation method lacks to capture the global dependency of infected areas in COVID-19 images, which is not conducive to the complete segmentation of scattered lesion areas, this paper proposes a COVID-19 lesion segmentation method UniUNet based on UniFormer with its strong ability to capture global dependency. Firstly, a U-shaped encoder-decoder structure based on UniFormer is designed, which can enhance the cooperation ability of local and global relations. Secondly, Swin spatial pyramid pooling module is introduced to compensate the influence of spatial resolution reduction in the encoder process and generate multi-scale representation. Multi-scale attention gate is introduced at the skip connection to suppress redundant features and enhance important features. Experiment results show that, compared with the other four methods, the proposed model achieves better results in Dice, loU and Recall on COVID-19-CT-Seg and CC-CCIII dataset, and achieves a more complete segmentation of the lesion area.
Copyright © by EnPress Publisher. All rights reserved.