The power of Artificial Intelligence (AI) combined with the surgeons’ expertise leads to breakthroughs in surgical care, bringing new hope to patients. Utilizing deep learning-based computer vision techniques in surgical procedures will enhance the healthcare industry. Laparoscopic surgery holds excellent potential for computer vision due to the abundance of real-time laparoscopic recordings captured by digital cameras containing significant unexplored information. Furthermore, with computing power resources becoming increasingly accessible and Machine Learning methods expanding across various industries, the potential for AI in healthcare is vast. There are several objectives of AI’s contribution to laparoscopic surgery; one is an image guidance system to identify anatomical structures in real-time. However, few studies are concerned with intraoperative anatomy recognition in laparoscopic surgery. This study provides a comprehensive review of the current state-of-the-art semantic segmentation techniques, which can guide surgeons during laparoscopic procedures by identifying specific anatomical structures for dissection or avoiding hazardous areas. This review aims to enhance research in AI for surgery to guide innovations towards more successful experiments that can be applied in real-world clinical settings. This AI contribution could revolutionize the field of laparoscopic surgery and improve patient outcomes.
The present study focuses on improving Cognitive Radio Networks (CRNs) based on applying machine learning to spectrum sensing in remote learning scenarios. Remote education requires connection dependability and continuity that can be affected by the scarcity of the amount of usable spectrum and suboptimal spectrum usage. The solution for the proposed problem utilizes deep learning approaches, namely CNN and LSTM networks, to enhance the spectrum detection probability (92% detection accuracy) and consequently reduce the number of false alarms (5% false alarm rate) to maximize spectrum utilization efficiency. By developing the cooperative spectrum sensing where many users share their data, the system makes detection more reliable and energy-saving (achieving 92% energy efficiency) which is crucial for sustaining stable connections in educational scenarios. This approach addresses critical challenges in remote education by ensuring scalability across diverse network conditions and maintaining performance on resource-constrained devices like tablets and IoT sensors. Combining CRNs with new technologies like IoT and 5G improves their capabilities and allows these networks to meet the constantly changing loads of distant educational systems. This approach presents another prospect to spectrum management dilemmas in that education delivery needs are met optimally from any STI irrespective of the availability of resources in the locale. The results show that together with machine learning, CRNs can be considered a viable path to improving the networks’ performance in the context of remote learning and advancing the future of education in the digital environment. This work also focuses on how machine learning has enabled the enhancement of CRNs for education and provides robust solutions that can meet the increasing needs of online learning.
In agriculture, crop yield and quality are critical for global food supply and human survival. Challenges such as plant leaf diseases necessitate a fast, automatic, economical, and accurate method. This paper utilizes deep learning, transfer learning, and specific feature learning modules (CBAM, Inception-ResNet) for their outstanding performance in image processing and classification. The ResNet model, pretrained on ImageNet, serves as the cornerstone, with introduced feature learning modules in our IRCResNet model. Experimental results show our model achieves an average prediction accuracy of 96.8574% on public datasets, thoroughly validating our approach and significantly enhancing plant leaf disease identification.
This study conducts a comparative analysis of various machine learning and deep learning models for predicting order quantities in supply chain tiers. The models employed include XGBoost, Random Forest, CNN-BiLSTM, Linear Regression, Support Vector Regression (SVR), K-Nearest Neighbors (KNN), Multi-Layer Perceptron (MLP), Recurrent Neural Network (RNN), Bidirectional LSTM (BiLSTM), Bidirectional GRU (BiGRU), Conv1D-BiLSTM, Attention-LSTM, Transformer, and LSTM-CNN hybrid models. Experimental results show that the XGBoost, Random Forest, CNN-BiLSTM, and MLP models exhibit superior predictive performance. In particular, the XGBoost model demonstrates the best results across all performance metrics, attributed to its effective learning of complex data patterns and variable interactions. Although the KNN model also shows perfect predictions with zero error values, this indicates a need for further review of data processing procedures or model validation methods. Conversely, the BiLSTM, BiGRU, and Transformer models exhibit relatively lower performance. Models with moderate performance include Linear Regression, RNN, Conv1D-BiLSTM, Attention-LSTM, and the LSTM-CNN hybrid model, all displaying relatively higher errors and lower coefficients of determination (R²). As a result, tree-based models (XGBoost, Random Forest) and certain deep learning models like CNN-BiLSTM are found to be effective for predicting order quantities in supply chain tiers. In contrast, RNN-based models (BiLSTM, BiGRU) and the Transformer show relatively lower predictive power. Based on these results, we suggest that tree-based models and CNN-based deep learning models should be prioritized when selecting predictive models in practical applications.
Accurate drug-drug interaction (DDI) prediction is essential to prevent adverse effects, especially with the increased use of multiple medications during the COVID-19 pandemic. Traditional machine learning methods often miss the complex relationships necessary for effective DDI prediction. This study introduces a deep learning-based classification framework to assess adverse effects from interactions between Fluvoxamine and Curcumin. Our model integrates a wide range of drug-related data (e.g., molecular structures, targets, side effects) and synthesizes them into high-level features through a specialized deep neural network (DNN). This approach significantly outperforms traditional classifiers in accuracy, precision, recall, and F1-score. Additionally, our framework enables real-time DDI monitoring, which is particularly valuable in COVID-19 patient care. The model’s success in accurately predicting adverse effects demonstrates the potential of deep learning to enhance drug safety and support personalized medicine, paving the way for safer, data-driven treatment strategies.
Falling is one of the most critical outcomes of loss of consciousness during triage in emergency department (ED). It is an important sign requires an immediate medical intervention. This paper presents a computer vision-based fall detection model in ED. In this study, we hypothesis that the proposed vision-based triage fall detection model provides accuracy equal to traditional triage system (TTS) conducted by the nursing team. Thus, to build the proposed model, we use MoveNet, a pose estimation model that can identify joints related to falls, consisting of 17 key points. To test the hypothesis, we conducted two experiments: In the deep learning (DL) model we used the complete feature consisting of 17 keypoints which was passed to the triage fall detection model and was built using Artificial Neural Network (ANN). In the second model we use dimensionality reduction Feature-Reduction for Fall model (FRF), Random Forest (RF) feature selection analysis to filter the key points triage fall classifier. We tested the performance of the two models using a dataset consisting of many images for real-world scenarios classified into two classes: Fall and Not fall. We split the dataset into 80% for training and 20% for validation. The models in these experiments were trained to obtain the results and compare them with the reference model. To test the effectiveness of the model, a t-test was performed to evaluate the null hypothesis for both experiments. The results show FRF outperforms DL model, and FRF has same accuracy of TTS.
Copyright © by EnPress Publisher. All rights reserved.