Smart electric meters play a pivotal role in making energy systems decarbonized and automating the energy system. Smart electric meters denote huge business opportunities for both public and private companies. Utility players can manage the electricity demand more efficiently whereas customers can monitor and control the electricity bill through the adoption of smart electric meters. The study examines the factors affecting the adoption intention of smart electric meters in Indian households. This study draws a roadmap that how utility providers and customers can improve the smart electric meters adoption. The study has five independent variables (performance expectancy, effort expectancy, social influence, environmentalism, and hedonic motivation) and one dependent variable (adoption intention). The sample size for the study is four hundred and sixty-two respondents from Delhi and the National Capital Region (NCR). The data was analysed using structural equation modelling (SEM). The results of this study have confirmed that performance expectancy, environmentalism, and social influence have a significant impact on the intention of adopting smart electric meters. Therefore, utility providers can improve their strategies to attract more customers to adopt smart electric meters by focusing more on the performance of smart electric meters and by making them environmentally friendly. This research offers meaningful insights to both customers and utility providers to make energy systems decarbonized and control energy consumption.
This study aims to explore the implications of imported electrical equipment in Indonesia, analysing both short-term and long-term impacts using a quantitative approach. The research focuses on understanding how various economic factors, such as domestic production, international pricing, national income, and exchange rates, influence the country’s import dynamics in the electrical equipment sector. Employing an Error Correction Model (ECM) for regression analysis, the study utilises time-series data from 2007 to 2021 to delve into the complex interplay of these variables. The methodology involves a comprehensive analysis using the Augmented Dickey-Fuller and Phillips-Perron tests to assess the stationarity of the data. This approach ensures the robustness of the ECM, which is employed to analyse the short-term and long-term effects of the identified variables on electrical equipment imports in Indonesia. The results reveal significant relationships between these economic factors and import levels. In the short term, imports are shown to be sensitive to changes in domestic economic conditions and international market prices, while in the long term, the country’s economic growth, reflected through GDP, emerges as a significant determinant. The findings suggest that Indonesia’s electrical equipment import policies must adapt highly to domestic and international economic changes. In the short term, a responsive approach is required to manage the immediate impacts of market fluctuations. The study highlights the importance of aligning import strategies with broader economic growth and environmental sustainability goals for long-term sustainability. Policymakers are advised to focus on enhancing domestic production capabilities, reducing import dependency, and ensuring that environmental considerations are integral to import policies. This study contributes to understanding import dynamics in a developing country context, offering valuable insights for policymakers and industry stakeholders in shaping strategies for economic growth and sustainability in the electrical equipment sector. The findings underscore the need for a balanced, data-driven approach to managing imports, aligning short-term responses with long-term strategic objectives for Indonesia’s ongoing development and industrial advancement.
The increasing demand for electricity and the need to reduce carbon emissions have made optimizing energy usage and promoting sustainability critical in the modern economy. This research paper explores the design and implementation of an Intelligent-Electricity Consumption and Billing Information System (IEBCIS), focusing on its role in addressing electricity sustainability challenges. Using the Design Science Research (DSR) methodology, the system’s architecture collects, analyses, and visualizes electricity usage data, providing users with valuable insights into their consumption patterns. The research involved developing and validating the IEBCIS prototype, with results demonstrating enhanced real-time monitoring, load shedding schedules, and billing information. These results were validated through user testing and feedback, contributing to the scientific knowledge of intelligent energy management systems. The contributions of this research include the development of a framework for intelligent energy management and the integration of data-driven insights to optimize electricity consumption, reduce costs, and promote sustainable energy use. This research was conducted over a time scope of two years (24 months) and entails design, development, pilot test implementation and validation phases.
To achieve the energy transition and carbon neutrality targets, governments have implemented multiple policies to incentivize electricity suppliers to invest in renewable energy. Considering different government policies, we construct a renewable energy supply chain consisting of electricity suppliers and electricity retailers. We then explore the impact of four policies on electricity suppliers’ renewable energy investments, environmental impacts, and social welfare. We validated the results based on data from Wuxi, Jiangsu Province, China. The results show that government subsidy policies are more effective in promoting electricity suppliers to invest in renewable energy as consumer preferences increase, while no-government policies are the least effective. We also show that electricity suppliers are most profitable under the government subsidy policy and least profitable under the carbon cap-and-trade policy. Besides, our results indicate that social welfare is the worst under the carbon cap-and-trade policy. With the increase in carbon intensity and renewable energy quota, social welfare is the highest under the subsidy policy. However, the social welfare under the renewable energy portfolio standard is optimal when the renewable energy quota is low.
Copyright © by EnPress Publisher. All rights reserved.