Water pollution has become a serious threat to our ecosystem. Water contamination due to human, commercial, and industrial activities has negatively affected the whole world. Owing to the global demanding challenges of water pollution treatments and achieving sustainability, membrane technology has gained increasing research attention. Although numerous membrane materials have focused, the sustainable water purification membranes are most effective for environmental needs. In this regard sustainable, green, and recyclable polymeric and nanocomposite membranes have been developed. Materials fulfilling sustainable environmental demands usually include wide-ranging polyesters, polyamides, polysulfones, and recyclable/biodegradable petroleum polymers plus non-toxic solvents. Consequently, water purification membranes for nanofiltration, microfiltration, reverse osmosis, ultrafiltration, and related filtration processes have been designed. Sustainable polymer membranes for water purification have been manufactured using facile techniques. The resulting membranes have been tested for desalination, dye removal, ion separation, and antibacterial processes for wastewater. Environmental sustainability studies have also pointed towards desired life cycle assessment results for these water purification membranes. Recycling of water treatment membranes have been performed by three major processes mechanical recycling, chemical recycling, or thermal recycling. Moreover, use of sustainable membranes has caused positive environmental impacts for safe waste water treatment. Importantly, worth of sustainable water purification membranes has been analyzed for the environmentally friendly water purification applications. There is vast scope of developing and investigating water purification membranes using countless sustainable polymers, materials, and nanomaterials. Hence, value of sustainable membranes has been analyzed to meet the global demands and challenges to attain future clean water and ecosystem.
To achieve the energy transition and carbon neutrality targets, governments have implemented multiple policies to incentivize electricity suppliers to invest in renewable energy. Considering different government policies, we construct a renewable energy supply chain consisting of electricity suppliers and electricity retailers. We then explore the impact of four policies on electricity suppliers’ renewable energy investments, environmental impacts, and social welfare. We validated the results based on data from Wuxi, Jiangsu Province, China. The results show that government subsidy policies are more effective in promoting electricity suppliers to invest in renewable energy as consumer preferences increase, while no-government policies are the least effective. We also show that electricity suppliers are most profitable under the government subsidy policy and least profitable under the carbon cap-and-trade policy. Besides, our results indicate that social welfare is the worst under the carbon cap-and-trade policy. With the increase in carbon intensity and renewable energy quota, social welfare is the highest under the subsidy policy. However, the social welfare under the renewable energy portfolio standard is optimal when the renewable energy quota is low.
Copyright © by EnPress Publisher. All rights reserved.