In today’s fast-moving, disrupted business environment, supply chain risk management is crucial. More critically, Industry 4.0 has conferred competitive advantages on supply chains through the integration of digital technologies into manufacturing and logistics, but it also implies several challenges and opportunities regarding the management of these risks. This paper looks at some ways emerging technologies, especially Artificial Intelligence (AI), help address pressing concerns about the management of risk and sustainability in logistics and supply chains. The study, using a systemic literature review (SLR) backed by a mapping study based on the Scopus database, reveals the main themes and gaps of prior studies. The findings indicate that AI can substantially enhance resilience through early risk identification, optimizing operations, enriching decision-making, and ensuring transparency throughout the value chain. The key message from the study is to bring out what technology contributes to rendering supply chains resilient against today’s uncertainties.
The introduction of artificial intelligence (AI) marks the beginning of a revolutionary period for the global economic environments, particularly in the developing economies of Africa. This concept paper explores the various ways in which AI can stimulate economic growth and innovation in developing markets, despite the challenges they face. By examining examples like VetAfrica, we investigate how AI-powered applications are transforming conventional business models and improving access to financial resources. This highlights the potential of AI in overcoming obstacles such as inefficient procedures and restricted availability of capital. Although AI shows potential, its implementation in these areas faces obstacles such as insufficient digital infrastructure, limited data availability, and a lack of necessary skills. There is a strong focus on the need for a balanced integration of AI, which involves aligning technological progress with ethical considerations and economic inclusivity. This paper focuses on clarifying the capabilities of AI in addressing economic disparities, improving productivity, and promoting sustainable development. It also aims to address the challenges associated with digital infrastructure, regulatory frameworks, and workforce transformation. The methodology involves a comprehensive review of relevant theories, literature, and policy documents, complemented by comparative analysis across South Africa, Nigeria, and Mauritius to illustrate transformative strategies in AI adoption. We propose strategic recommendations to effectively and ethically utilize the potential of AI, by advocating for substantial investments in digital infrastructure, education, and legal frameworks. This will enable Africa to fully benefit from the transformative impact of AI on its economic landscape. This discourse seeks to offer valuable insights for policymakers, entrepreneurs, and investors, emphasizing innovative AI applications for business growth and financing, thereby promoting economic empowerment in developing economies.
The use of artificial intelligence (AI) in the detection and diagnosis of plant diseases has gained significant interest in modern agriculture. The appeal of AI arises from its ability to rapidly and precisely analyze extensive and complex information, allowing farmers and agricultural experts to quickly identify plant diseases. The use of artificial intelligence (AI) in the detection and diagnosis of plant diseases has gained significant attention in the world of agriculture and agronomy. By harnessing the power of AI to identify and diagnose plant diseases, it is expected that farmers and agricultural experts will have improved capabilities to tackle the challenges posed by these diseases. This will lead to increased effectiveness and efficiency, ultimately resulting in higher agricultural productivity and reduced losses caused by plant diseases. The use of artificial intelligence (AI) in the detection and diagnosis of plant diseases has resulted in significant benefits in the field of agriculture. By using AI technology, farmers and agricultural professionals can quickly and accurately identify illnesses affecting their crops. This allows for the prompt adoption of appropriate preventative and corrective actions, therefore reducing losses caused by plant diseases.
This study investigates the evolution of monetary policy in Ghana and explores the potential of Central Bank Digital Currencies (CBDCs), specifically the e-Cedi, as a tool to enhance financial inclusion and modernize the country’s financial system. Ghana’s monetary policy framework has undergone significant transformations since the establishment of the Bank of Ghana in 1957, with notable achievements in stabilizing the economy and managing inflation. However, large segments of the population, particularly in rural areas, remain unbanked or underbanked, highlighting the limitations of traditional monetary tools. The introduction of the e-Cedi presents an opportunity to bridge these gaps by providing secure, efficient, and accessible financial services to underserved communities. The study employs a qualitative research design, integrating historical analysis, case studies, and thematic analysis to assess the potential benefits and challenges of CBDCs in Ghana. Key findings indicate that while the e-Cedi could significantly enhance financial inclusion, challenges related to technological infrastructure, cybersecurity, and public trust must be addressed. The study concludes that a balanced approach, which prioritizes digital infrastructure development, strong cybersecurity measures, and collaboration with financial institutions, is essential for maximizing the potential of CBDCs in Ghana. Recommendations for future research include a deeper exploration of the impact of CBDCs on financial stability and further analysis of rural adoption barriers.
This article describes a classification tool to cluster SARAL/AltiKa waveforms. The tool was made using Python scripts. Radar altimetry systems (e.g., SARAL/AltiKa) measures the distance from the satellite centre to a target surface by calculating the satellite-to-surface round-trip time of a radar pulse. An altimeter waveform represents the energy reflected by the earth’s surface to the satellite antenna with respect to time. The tool clusters the altimetric waveforms data into desired groups. For the clustering, we used evolutionary minimize indexing function (EMIF) with k-means cluster mechanism. The idea was to develop a simple interface which takes the altimetry waveforms data from a folder as inputs and provides single value (using EMIF algorithm) for each waveform. These values are further used for clustering. This is a simple light weighted tool and user can easily interact with it.
Copyright © by EnPress Publisher. All rights reserved.