Weather and climate services are essential tools that help farmers make informed choices, such as choosing appropriate crop varieties. These services depend considerably on the availability of adequate investments in infrastructure related to weather forecasting, which are often provided by the State in most countries. Zimbabwean farmers generally have limited access to modern weather and climate services. While extensive attempts have been made to investigate farmers’ socioeconomic factors that influence access to and use of weather and climate services, comparative political economy analysis of weather and climate service production and use is limited. To address this knowledge gap, this study examines the production, dissemination, and usage of modern seasonal weather services through a political economy analysis perspective. The findings of this study highlight considerable discrepancies in access and use of seasonal weather forecasts between male and female farmers, those who practise African Traditional Religions versus Christians, and the minority group (Ndau tribe) and the majority group (Manyika tribe). This result suggested the presence of social marginalization. For example, minority Ndau members living in remote areas with limited radio signals and a weak mobile network have limited access to modern seasonal weather forecasts, forcing them to rely much more on indigenous weather forecasts. Further, due to unequal power relations, a greater proportion of male farmers participated in agricultural policy formation processes than their female counterparts. To promote inclusive development and implementation, deliberate efforts need to be made by State authorities to incorporate adherents of African traditional religions, members of minority tribes and female farmers in agricultural policymaking processes, including seasonal weather forecast delivery policies. Further, the study suggests the relaxation or elimination of international sanctions on Zimbabwe by the European Union, United Kingdom and the United States of America, given that they are considerably affecting marginalized groups of farmers in their climate change adaptation practices, including the use of modern weather and climate services. The vast majority of these marginalized farmers never benefitted from the land reform programme and were also not responsible for the design and implementation of this programme which triggered these sanctions.
To gain a deep understanding of maintenance and repair planning, investigate the weak points of the distribution network, and discover unusual events, it is necessary to trace the shutdowns that occurred in the network. Many incidents happened due to the failure of thermal equipment in schools. On the other hand, the most important task of electricity distribution companies is to provide reliable and stable electricity, which minimal blackouts and standard voltage should accompany. This research uses seasonal time series and artificial neural network approaches to provide models to predict the failure rate of one of the equipment used in two areas covered by the greater Tehran electricity distribution company. These data were extracted weekly from April 2019 to March 2021 from the ENOX incident registration software. For this purpose, after pre-processing the data, the appropriate final model was presented with the help of Minitab and MATLAB software. Also, average air temperature, rainfall, and wind speed were selected as input variables for the neural network. The mean square error has been used to evaluate the proposed models’ error rate. The results show that the time series models performed better than the multi-layer perceptron neural network in predicting the failure rate of the target equipment and can be used to predict future periods.
Background: According to the 2023 World Economic Forum report, the impact of Artificial Intelligence (AI) and automation on the job market was more significant than originally projected. Although 2018 research forecasted significant job losses balanced by job creation, current data indicates otherwise. Between 2023 and 2027, it is anticipated that 69 million new jobs will be created due to advancements in AI, however, this will be offset by the loss of 83 million jobs, leading to a net decrease of 14 million jobs worldwide. Roles related to AI, digitalization, and sustainability, such as AI specialists and renewable energy engineers are expected to grow, while those in clerical and administrative sectors are most at risk of decline. This shift underscores the need for reskilling and adapting to evolving fields, as nearly 44% of workers skills will face disruption by 2027. The demand for analytical thinking, technological literacy, and adaptability will grow as companies increasingly adopt frontier technologies. Objectives: (1) identify key variables influencing adaptability of college graduates in Indonesia, (2) quantify the strength of relationships between these variables to understand the combined effect on graduate adaptability. The research also aims to (3) develop theoretical and practical recommendations to strengthen ICIL policy and equip students with the relevant skills needed to thrive in an ever-changing job market. Methodology: The research focuses on predicting future employment trends, adaptability, and learning agility (LA), along with the implications for improving the Independent Campus Independent Learning (ICIL) policy. It focused on the significant unemployment rate among college graduates, along with the lack of research on the relationship between job change predictions, graduates’ adaptability, and the impact on graduates’ general well-being. The mixed-method strategy with quantitative analysis was used to conduct this research with data collected from 284 ICIL participants through online survey. The gathered data was evaluated using Structural Equation Modeling (SEM) with Lisrel version 10. Results: The result showed that job trend projections significantly influence responsiveness, which demonstrated a robust association between employment trend predictions and LA. Responsiveness significantly influenced learning agility which indicated no significant direct association between job trend projections and graduate adaptability. Conclusion: The research emphasized the need to consider adaptability as a concept with multiple dimensions. It proposed incorporating these factors into strategies for education and human resources development in order to better equip graduates for the demands of a constantly changing work market. Unique contribution: This research focused on adaptability as a multifaceted concept that consist of the ability to forecast job trends, be sensitive, and possess LA. It offered a deeper understanding of the relationships between these variables as discussed in the human resources literature. Technology, corporate culture, and training played a critical role in connecting employment trend prediction with the ability to respond effectively. Key recommendation: Institutions should implement a comprehensive approach to the development of human resources, with emphasis on fostering critical thinking, analytical abilities, and the practical application of information. By employing these tactics, higher education institutions may effectively equip graduates with both academic proficiency and the ability to adapt and thrive in quickly changing organizational environments, leading to the production of robust and versatile workers.
Competition in the telecommunications market has significant benefits and impacts in various fields of society such as education, health and the economy. Therefore, it is key not only to monitor the behavior of the concentration of the telecommunications market but also to forecast it to guarantee an adequate level of competition. This work aims to forecast the Linda index of the telecommunications market based on an ARIMA time series model. To achieve this, we obtain data on traffic, revenue, and access from companies in the telecommunications market over a decade and use them to construct the Linda index. The Linda index allows us to measure the possible existence of oligopoly and the inequality between different market shares. The data is modeled through an ARIMA time series to finally predict the future values of the Linda index. The results show that the Colombian telecommunications market has a slight concentration that can affect the level of competition.
The Consumer Price Index (CPI) is a vital gauge of economic performance, reflecting fluctuations in the costs of goods, services, and other commodities essential to consumers. It is a cornerstone measure used to evaluate inflationary trends within an economy. In Saudi Arabia, forecasting the Consumer Price Index (CPI) relies on analyzing CPI data from 2013 to 2020, structured as an annual time series. Through rigorous analysis, the SARMA (0,1,0) (12,0,12) model emerges as the most suitable approach for estimating this dataset. Notably, this model stands out for its ability to accurately capture seasonal variations and autocorrelation patterns inherent in the CPI data. An advantageous feature of the chosen SARMA model is its self-sufficiency, eliminating the need for supplementary models to address outliers or disruptions in the data. Moreover, the residuals produced by the model adhere closely to the fundamental assumptions of least squares principles, underscoring the precision of the estimation process. The fitted SARMA model demonstrates stability, exhibiting minimal deviations from expected trends. This stability enhances its utility in estimating the average prices of goods and services, thus providing valuable insights for policymakers and stakeholders. Utilizing the SARMA (0,1,0) (12,0,12) model enables the projection of future values of the Consumer Price Index (CPI) in Saudi Arabia for the period from June 2020 to June 2021. The model forecasts a consistent upward trajectory in monthly CPI values, reflecting ongoing economic inflationary pressures. In summary, the findings underscore the efficacy of the SARMA model in predicting CPI trends in Saudi Arabia. This model is a valuable tool for policymakers, enabling informed decision-making in response to evolving economic dynamics and facilitating effective policies to address inflationary challenges.
Accurate demand forecasting is key for companies to optimize inventory management and satisfy customer demand efficiently. This paper aims to Investigate on the application of generative AI models in demand forecasting. Two models were used: Long Short-Term Memory (LSTM) networks and Variational Autoencoder (VAE), and results were compared to select the optimal model in terms of performance and forecasting accuracy. The difference of actual and predicted demand values also ascertain LSTM’s ability to identify latent features and basic trends in the data. Further, some of the research works were focused on computational efficiency and scalability of the proposed methods for providing the guidelines to the companies for the implementation of the complicated techniques in demand forecasting. Based on these results, LSTM networks have a promising application in enhancing the demand forecasting and consequently helpful for the decision-making process regarding inventory control and other resource allocation.
Copyright © by EnPress Publisher. All rights reserved.