Building cooling load depends on heat gains from the outside environment. Appropriate orientation and masonry materials play vital roles in the reduction of overall thermal loads buildings. A net-zero energy building performance has been analyzed in order to ascertain the optimum orientation and wall material properties, under the climatic conditions of Owerri, Nigeria. Standard cooling load estimation techniques were employed for the determination of the diurnal interior load variations in a building incorporating renewable energy as the major energy source, and compared with the situation in a conventionally powered building. The results show a 19.28% reduction in the building’s cooling load when brick masonry was used for the wall construction. It was observed that a higher heat gain occurred when the building faced the East-West direction than when it was oriented in the North-South direction. Significant diurnal cooling loads variation as a result of radiation through the windows was also observed, with the east facing windows contributing significantly higher loads during the morning hours while the west facing windows contributed higher amounts in the evening. The economic analysis of the net-zero energy building showed an 11.63% reduction in energy cost compared to the conventional building, with a 7-year payback period for the use of Solar PV systems. Therefore, the concept of net-zero energy building will not only help in energy conservation, but also in cost savings, and the reduction of carbon footprint in the built environment.
Weather is almost inevitable and plays an important role in determining the duration of construction projects. The construction industry ultimately thrives upon the physical input, put in by the labours. The majority of the construction projects are executed in the outdoor environment and hence face a high impact of weather conditions. This study therefore evaluated the influence of weather conditions on construction workers’ productivity in Jos, Plateau State and proceeded to make recommendations geared towards the improvement of construction workers’ productivity in Jos. The study was conducted through the direct observation method. Three hundred and ninety-six (396) works were purposively sampled in selected working sites. The outcome shows that during dry weather, there was considerably less significant productivity of manual excavation. In contrast, a large increase in blockwork and plasterwork productivity was observed with a percentage difference of 33%, 56.3% and 61%, respectively. On the other hand, during wet weather conditions, the labour productivity for manual excavation increases, whereas it decreases for block work and plasterwork with percentages difference of 58%, 40% and 47%, respectively. Besides, relative humidity and wind speed have no impact on labours’ productivity in dry and wet weather. Besides, the temperature has the most decisive impact on workers’ productivity. Moreover, wind speed and humidity have a lower influence on workers’ productivity. The construction industry stakeholder in Jos, Nigeria, would benefit from this study’s recommendations for reducing the influence of weather on the building sector. Besides, the output can be extended to other regions having similar characteristics.
The increasing epileptic electricity supply, mainly in the residential areas of Nigerian cities, has been linked to the incorrect knowledge of the numerous socio-economic and physical indices that influence household electricity usage. Most of the seemingly identified explanatory factors were done at macro level which does not give a clear estimate of this electricity demand. The thrust of the study is to analyse empirically the household electricity determinants in Nigerian cities with a view to evolving a more informed and sustainable energy policy decision. Multistage area cluster sampling method was adopted in the study where 769 copies of structured questionnaire were distributed to electricity users of prepaid meters in five major Nigerian cities. The research hypothesis was tested using the multiple linear regression statistical tool. The result revealed that nine variables which include age (r = 0.05, p-value: 0.05), household income (r = 0.00, p-value: 0.05), number of hours that people stay outside the house (r = 0.043, p-value: 0.05), number of teenagers at home, (r = 0.006, p-value: 0.01) number of electrical appliances (r = 0.016, p-value: 0.01), type of house (r = 0.012, p-value: 0.01), hours that the electrical appliances are used (r = 0.043, p-value: 0.05), weather condition, (r = 0.011, p-value: 0.05) and the location of the building (r = 0.045, p-value: 0.05) were significant in determining the household electricity consumption. Policies based on the findings will give energy and urban planners an empirical basis for accurate and robust forecasting of the determinants that influence household electricity consumption in Nigeria that is devoid of any speculation or unfounded predictions.
This study investigated the variability of climate parameters and food crop yields in Nigeria. Data were sourced from secondary sources and analyzed using correlation and multivariate regression. Findings revealed that pineapple was more sensitive to climate variability (76.17%), while maize and groundnut yields were more stable with low sensitivity (0.98 and 1.17%). Yields for crops like pineapple (0.31 kg/ha) were more sensitive to temperature, while maize, beans, groundnut, and vegetable yields were less sensitive to temperature with yields ranging from 0.15 kg/ha, 0.21 kg/ha, 0.18 kg/ha, and 0.12 kg/ha respectively. On the other hand, maize, beans, groundnut, and vegetable yields were more sensitive to rainfall ranging from 0.19kg/ha, 0.15kg/ha, 0.22 kg/ha, and 0.18 kg/ha respectively compared to pineapple yields which decreased with increase rainfall (−0.25 kg/ha). The results further showed that for every degree increase in temperature, maize, pineapple, and beans yields decreased by 0.48, 0.01, and 2.00 units at a 5 % level of significance, while vegetable yield decreased by 0.25 units and an effect was observed. Also, for every unit increase in rainfall, maize, pineapple, groundnut, and vegetable yields decreased by 3815.40, 404.40, 11,398.12, and 2342.32 units respectively at a 5% level, with an observed effect for maize yield. For robustness, these results were confirmed by the generalized additive and the Bayesian linear regression models. This study has been able to quantify the impact of temperature on food crop yields in the African context and employed a novel analytical approach combining the correlation matrix and multivariate linear regression to examine climate-crop yield relationships. The study contributes to the existing body of knowledge on climate-induced risks to food security in Nigeria and provides valuable insights for policymakers, farmers, government, and stakeholders to develop effective strategies to mitigate the impacts of climate change on food crop yields through the integration of climate-smart agricultural practices like agroforestry, conservation agriculture, and drought-tolerant varieties into national agricultural policies and programs and invest in climate information dissemination channels to help consider climate variability in agricultural planning and decision-making, thereby enhancing food security in the country.
The developmental and advancement of engineering vis-à-vis scientific and technological research and development (R&D) has contributed immensely to sustainable development (SD) initiatives, but our future survival and development are hampered by this developmental and advancement mechanism. The threat posed by current engineering vis-à-vis scientific and technological practices is obvious, calling for a paradigm change that ensures engineering as well as scientific and technological practices are focused on SD initiatives. In order to promote sound practices that result in SD across all economic sectors, it is currently necessary to concentrate on ongoing sustainable engineering vis-à-vis scientific and technological education. Hence, this perspective review article will attempt to provide insight from Sub-Saharan Africa (Nigeria to be specific) about how engineering vis-à-vis scientific and technological R&D should incorporate green technologies in order to ensure sustainability in the creation of innovations and practices and to promote SD and a green economy. Furthermore, the study highlights the importance as well as prospects and advancements of engineering vis-à-vis scientific and technological education from the in Sub-Saharan Africa context.
Copyright © by EnPress Publisher. All rights reserved.